Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2004^{2015}=2004^{2014+1}=2004^{2014}.2004=\left(2004^{1007}\right)^2.2004\)
Vì 2004 không phải là số chính phương, \(\left(2004^{1007}\right)^2\)là số chính phương
=> A không phải là số chính phương.
Số 20042015 không là số chính phương vì : 20042015 = 20042.1007+1
ko, dùng chữ số tận cùng của lũy thừa là ra
22015= 22012+3=2503.4+3
=> 22015 tận cùng là chữ số 8
mà SCP chỉ tận cùng bằng 1;4;5;6;9
=> 22015 ko phải số chính phương
Ta có:3A=32+33+...+32016
A=3+32+...+32015
=>2A=(32+33+...+32016)-(3+32+...+32015)=32016-3=3.(32015-1)
=>A=3.(32015-1)/2
Do 32015 lẻ nên 32015-1 chẵn
Đặt A=3.k (k\(\in\)N*)
Do A chia hết cho 1,3,k nên A là hợp số
Do A=3.(32015-1) chia hết cho 3 mà không chia hết cho 9 nên A không là số chính phương
Ta có A=2004^2015=(...0) (nhớ có gạch ngang trên đầu nhé)
mà số chính phương có tận cùng là các số 0 1 4 5 6 9
=>A=2004^2015 là số chính phương