\(\sqrt{31^{31}}\) và \(\sqrt{17^{39}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

a    \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)

\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)

vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)

b     \(6=\sqrt{36}\)

\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)

c      \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)

\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)

vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)

\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)

5 tháng 9 2018

\(\sqrt{31^{31}}>\sqrt{31^{30}}>\sqrt{17^{30}}>\sqrt{17^{29}}\)

6 tháng 7 2018

a ) 

\(\sqrt{31}+4< \sqrt{36}+4=10\left(1\right)\)

\(6+\sqrt{17}>6+\sqrt{16}=6+4=10\left(2\right)\)

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\sqrt{31}+4< 10< 6+\sqrt{17}\)

\(\Rightarrow\sqrt{31}+4< \sqrt{17}+6\)

b ) 

\(\sqrt{3}+\sqrt{2}>\sqrt{1}+\sqrt{1}=2\)

c ) 

\(\sqrt{12+13}=\sqrt{25}=5\left(1\right)\)

\(\sqrt{12}+\sqrt{13}>\sqrt{4}+\sqrt{9}=2+3=5\left(2\right)\)

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\sqrt{12+13}< \sqrt{12}+\sqrt{13}\)

26 tháng 10 2018

:V

khó vc

30 tháng 6 2021

Ta có \(\sqrt{8}+3< \sqrt{9}+3=3+3=6\)

=> \(\sqrt{8}+3< 6\)

Ta có \(\sqrt{48}< \sqrt{49};\sqrt{35}< \sqrt{36}\)

=> \(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{46}\)

=> \(\sqrt{48}+\sqrt{35}< 13\)

=> \(\sqrt{48}< 13-\sqrt{35}\)

c) Ta có \(-\sqrt{19}< -\sqrt{17}\)

=> \(\sqrt{31}-\sqrt{19}< \sqrt{31}-\sqrt{17}\)

=> \(\sqrt{31}-\sqrt{19}< \sqrt{36}-17=6-\sqrt{17}\)

d) Ta có \(9=\sqrt{81}\Leftrightarrow\sqrt{81}>\sqrt{80}\);

\(-\sqrt{58}>-\sqrt{59}\)

=> \(\sqrt{81}-\sqrt{58}>\sqrt{80}-\sqrt{59}\)

<=> \(9-\sqrt{58}>\sqrt{80}-\sqrt{59}\)

Bài 1 : \(\sqrt{49-12\sqrt{5}}+\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{45-4\sqrt{45}+4}+\sqrt{45+4\sqrt{45}+4}\)

\(=\sqrt{\left(\sqrt{45}-2\right)^2}+\sqrt{\left(\sqrt{45}+2\right)^2}\)

\(=\sqrt{45}-2+\sqrt{45}+2=2\sqrt{45}\)

Bài 2 : \(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{20+6\sqrt{20}+9}+\sqrt{20-6\sqrt{20}+9}\)

\(=\sqrt{\left(\sqrt{20}+3\right)^2}+\sqrt{\left(\sqrt{20}-3\right)^2}\)

\(=\sqrt{20}+3+\sqrt{20}-3=2\sqrt{20}\)

Bài 3 : \(\sqrt{31-12\sqrt{3}}+\sqrt{31+12\sqrt{3}}\)

\(=\sqrt{27-4\sqrt{27}+4}+\sqrt{27+4\sqrt{27}+4}\)

\(=\sqrt{\left(\sqrt{27}-2\right)^2}+\sqrt{\left(\sqrt{27}+2\right)^2}\)

\(=\sqrt{27}-2+\sqrt{27}+2=2\sqrt{27}\)

Chúc bạn học tốt

1 tháng 8 2018

4 , Ta có :

\(\sqrt{39-12\sqrt{3}}-\sqrt{39+12\sqrt{3}}\)

\(=\sqrt{3-2.6.\sqrt{3}+6^2}-\sqrt{3+2.6.\sqrt{3}+6^2}\)

\(=\sqrt{\left(\sqrt{3}-6\right)^2}-\sqrt{\left(\sqrt{3}+6\right)^2}\)

\(=\left|\sqrt{3}-6\right|-\left|\sqrt{3}+6\right|\)

\(=6-\sqrt{3}-\sqrt{3}-6\)

\(=-2\sqrt{3}\)

21 tháng 6 2018

\(1)\) Ta có : 

\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)

\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)

Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)

\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Chúc bạn học tốt ~ 

a) \(5\sqrt{6}=\sqrt{25.6}=\sqrt{150}\)

\(6\sqrt{5}=\sqrt{36.5}=\sqrt{180}\)

Do \(150< 180=>\sqrt{150}< \sqrt{180}\)

Ủng hộ nha

Thanks

2 tháng 7 2016

làm đc phần b ko hộ mk với

13 tháng 9 2021

a, \(\sqrt{17-12\sqrt{2}}-\sqrt{17+12\sqrt{2}}\)

\(=\sqrt{17-2.3.2\sqrt{2}}-\sqrt{17+2.3.2\sqrt{2}}\)

\(=\sqrt{9-2.3.2\sqrt{2}+8}-\sqrt{9+2.3.2\sqrt{2}+8}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(3+2\sqrt{2}\right)^2}=\left|3-2\sqrt{2}\right|-\left|3+2\sqrt{2}\right|\)

\(=3-2\sqrt{2}-3-2\sqrt{2}=-4\sqrt{2}\)

b, \(\sqrt{31-12\sqrt{3}}-\sqrt{31+12\sqrt{3}}\)

\(=\sqrt{31-2.2.3\sqrt{3}}-\sqrt{31+2.2.3\sqrt{3}}\)

\(=\sqrt{\left(3\sqrt{3}-2\right)^2}-\sqrt{\left(3\sqrt{3}+2\right)^2}=\left|3\sqrt{3}-2\right|-\left|3\sqrt{3}+2\right|\)

\(=3\sqrt{3}-2-3\sqrt{3}-2=-4\)

24 tháng 6 2017

1) \(\sqrt{17}>\sqrt{16}=4\)

\(\sqrt{26}>\sqrt{25}=5\)

Vế cộng vế ta có: \(\sqrt{17}+\sqrt{26}>9\)

2) Ta có: \(13-\sqrt{35}>13-\sqrt{36}=13-6=7\left(1\right)\)

\(\sqrt{48}< \sqrt{49}=7\left(2\right)\)

Từ (1);(2), Suy ra: \(13-\sqrt{35}>\sqrt{48}\)