Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta gán : \(1992\rightarrow D\); \(1992\rightarrow A\)
\(D=D+1:A=D.\sqrt[D]{A}\)
CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.
Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.
1) Áp dụng bất đẳng thức \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\sqrt{\frac{a+b}{2}}\) (Bạn có thể chứng minh bằng biến đổi tương đương)
Ta có : \(\frac{\sqrt{1991}+\sqrt{1993}}{2}\le\sqrt{\frac{1991+1993}{2}}\)
\(\Leftrightarrow\sqrt{1991}+\sqrt{1993}\le2\sqrt{1992}\)
2) Đề thiếu điều kiện
3) Mình sửa lại đề chút xíu nhé :)
Áp dụng bđt Bunhiacopxki , ta có : \(\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)
\(\Rightarrow\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le ab\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le ab\)
Ta có:
\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=-\sqrt{n+1}-\sqrt{n}\)
\(\Rightarrow P=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...+\frac{1}{\sqrt{1992}-\sqrt{1993}}\)
\(=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+...+\sqrt{1992}+\sqrt{1993}\)
\(=\sqrt{1993}-\sqrt{2}\)
Vậy P là số vô tỉ
\(A=\sqrt{12+\sqrt{12+\sqrt{12}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}< \sqrt{12+\sqrt{12+\sqrt{16}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{9}}}}\)\(=7\)
\(B=\sqrt{14}+\sqrt{11}>\sqrt{13,69}+\sqrt{10,89}=7\)
\(\Rightarrow A< B\)
Ta có:
\(12< 16\Rightarrow\sqrt{12}< \sqrt{16}=4\\ 6< 9\Rightarrow\sqrt{6}< \sqrt{9}=3\)
\(\Rightarrow A< \sqrt{12+\sqrt{12+4}}+\sqrt{6+\sqrt{6+\sqrt{6+3}}}=\sqrt{12+4}+\sqrt{6+3}=4+3=7\) (1)
Lại có :
\(B=\sqrt{14}+\sqrt{11}\Rightarrow B^2=25+2\sqrt{14.11}=25+2\sqrt{154}>25+2\sqrt{144}=25+2.12=49=7^2\)
Mà B > 0
\(\Rightarrow B>7\) (2)
Từ (1),(2) suy ra A<B