K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\sqrt{\frac{a+b}{2}}\) :

Xét : \(N-M=2\sqrt{2014}-\left(\sqrt{2015}+\sqrt{2013}\right)\)

Theo bđt trên thì \(\frac{\sqrt{2013}+\sqrt{2015}}{2}\le\sqrt{\frac{2013+2015}{2}}\Leftrightarrow\sqrt{2013}+\sqrt{2015}\le2\sqrt{2014}\)

\(\Rightarrow N-M>0\Rightarrow N>M\)

8 tháng 6 2016

bình từng cái @

15 tháng 10 2016

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

15 tháng 10 2016

ki+e

n ejmfjnhcy

7 tháng 6 2018

a) Có \(\sqrt{25}=5;\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{25}+\sqrt{45}< 5+7=12\)

Vậy \(\sqrt{25}+\sqrt{45}< 12.\)

b) có \(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013}.\sqrt{2015}\)\(=4028+2\sqrt{2013.2015}\)

\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2.2014=4028+2\sqrt{2014^2}\)

Xét \(2014^2-2013.2015=2014.\left(2013+1\right)-2013\left(2014+1\right)\)

\(=2013.2014+2014-2013.2014-2013=1>0\)

\(\Rightarrow2\sqrt{2013.2015}< 2\sqrt{2014^2}\)

Hay \(\left(\sqrt{2013}+\sqrt{2015}\right)^2< \left(2\sqrt{2014}\right)^2\)

\(\Rightarrow\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
Vậy \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}.\)

c) Có \(\left(\sqrt{2014}-\sqrt{2013}\right)\left(\sqrt{2014}+\sqrt{2013}\right)=2014-2013=1\)\(\rightarrow\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)

\(\sqrt{2014}>\sqrt{2013};\sqrt{2013}>\sqrt{2012}\)

\(\rightarrow\sqrt{2014}+\sqrt{2013}>\sqrt{2013}+\sqrt{2012}\)

Hay \(\dfrac{1}{\sqrt{2014}+\sqrt{2013}}< \dfrac{1}{\sqrt{2013}+\sqrt{2012}}\)

Tương tự, ta có \(\dfrac{1}{\sqrt{2013}+\sqrt{2012}}=\sqrt{2013}-\sqrt{2012}\)

\(\Rightarrow\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}\)

Vậy \(\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}.\)

7 tháng 6 2018

lop8. thi ap bdt nhu thanh song,

a)

VT=√25+√45<√2(25+45)=√140<√144=12=VP

b)

VT=√2013+√2015<√[2(2013+2015)]=√[4.2014]=2√(2014)=VP.

c) C=VT-VP

√2014+√2012-2√2012

kq(b)=> C<0

VT<VP

a) Ta có: \(2\sqrt{3}=\sqrt{4\cdot3}=\sqrt{12}\)

\(3\sqrt{2}=\sqrt{9\cdot2}=\sqrt{18}\)

mà \(\sqrt{12}< \sqrt{18}\)(vì 12<18)

nên \(2\sqrt{3}< 3\sqrt{2}\)

b) Ta có: \(\left(2\sqrt{3}+1\right)^2=8+4\sqrt{3}+1=9+4\sqrt{3}\)

\(4^2=16=9+7\)

mà \(4\sqrt{3}< 7\left(\sqrt{48}< \sqrt{49}\right)\)

nên \(\left(2\sqrt{3}+1\right)^2< 4^2\)

hay \(2\sqrt{3}+1< 4\)

c) Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)

\(\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)

Ta có: \(\sqrt{2015}+\sqrt{2014}>\sqrt{2013}+\sqrt{2014}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{2015}+\sqrt{2014}}< \dfrac{1}{\sqrt{2013}+\sqrt{2014}}\)

hay \(\sqrt{2015}-\sqrt{2014}< \sqrt{2014}-\sqrt{2013}\)

10 tháng 2 2021

\(a\))Ta có:\(2\sqrt{3}=\sqrt{12}\)

             \(3\sqrt{2}=\sqrt{18}\)

Vì \(\sqrt{12}< \sqrt{18}\)

\(2\sqrt{3}< 3\sqrt{2}\)

\(b\))Ta có:\(2\sqrt{3}+1=\sqrt{12}+1\)

             \(4=3+1=\sqrt{9}+1\)

Vì \(\sqrt{12}+1>\sqrt{9}+1\)

\(2\sqrt{3}+1>4\)

1 tháng 9 2018

\(\frac{1}{\sqrt{2013}-\sqrt{2014}}-\frac{1}{\sqrt{2014}-\sqrt{2015}}\)

\(=\frac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2014}-\sqrt{2015}\right)}-\frac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}\)

\(=\frac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}\)

\(=\sqrt{2015}-\sqrt{2013}\)

1 tháng 9 2018

\(=\frac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}\)

\(=\sqrt{2015}-\sqrt{2013}\)

8 tháng 8 2016

1) Ta có bđt sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m)

Áp dụng : \(\frac{\sqrt{2005}+\sqrt{2007}}{2}< \sqrt{\frac{2005+2007}{2}}\)

\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)

2) Xét : \(A-B=2\sqrt{2014}-\left(\sqrt{2013}+\sqrt{2015}\right)\)

Theo câu 1) , ta dễ dàng c/m được \(2\sqrt{2014}>\sqrt{2013}+\sqrt{2015}\)

Do đó A - B > 0 => A > B

8 tháng 8 2016

2) Bình phương 2 vế ta có:

 \(A^2=2014-2013=1\)

\(B^2=2015-2014=1\)

=>A=B

1 tháng 9 2019

Đặt \(\sqrt{x-2013}=a\left(a>0\right)\)

\(\sqrt{y-2014}=b\left(b>0\right)\)

\(\sqrt{z-2015}=c\left(c>0\right)\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

<=> \(\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)

<=> \(\frac{4a-4-a^2}{4.a^2}+\frac{4b-4-b^2}{4b^2}+\frac{4c-4+c^2}{4c^2}=0\)

<=>\(\frac{-\left(a^2-4a+4\right)}{4a^2}-\frac{b^2-4b+4}{4b^2}-\frac{c^2-4c+4}{4c^2}=0\)

<=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}=0\).

\(\frac{\left(a-2\right)^2}{4a^2}\ge0\forall a>0\)

\(\frac{\left(b-2\right)^2}{4b^2}\ge0\forall b>0\)

\(\frac{\left(c-2\right)^2}{4c^2}\ge0\forall c>0\)

=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}\ge0\) với moi a,b,c >0

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}\sqrt{x-2013}=2\\\sqrt{y-2014}=2\\\sqrt{z-2015}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x-2013=4\\y-2014=4\\z-2015=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)(t/m)

Vậy \(\left(x,y,z\right)\in\left\{\left(2017,2018,2019\right)\right\}\)

1 tháng 9 2019

ko bt