\(\dfrac{1}{7}\sqrt{51}\) với 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)

nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)

30 tháng 9 2019

a)1/7\(\sqrt{51}\)=\(\sqrt{\frac{51}{49}}\);1/9\(\sqrt{150}=\sqrt{\frac{150}{81}}=\sqrt{\frac{50}{27}}\)

\(\frac{51}{49}=1+\frac{1}{49}+\frac{1}{49}\);\(\frac{50}{27}=1+\frac{23}{27}>1+\frac{23}{36}>\)\(1+\frac{2}{36}=1+\frac{1}{36}+\frac{1}{36}\)

1/49<1/36 nên 51/49<50/27 =>1/7\(\sqrt{51}\)<1/9\(\sqrt{150}\)

b) \(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}\)+\(\sqrt{2015}\)

=>\(\frac{1}{\sqrt{2017}+\sqrt{2016}}< \)\(\frac{1}{\sqrt{2016}+\sqrt{ }2015}\) <=> \(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}\)-\(\sqrt{2015}\)

AH
Akai Haruma
Giáo viên
13 tháng 9 2018

Lời giải:

a)

Ta có: \(\frac{1}{7}\sqrt{51}< \frac{1}{7}\sqrt{64}=\frac{8}{7}\)

\(\frac{1}{9}\sqrt{150}> \frac{1}{9}\sqrt{144}=\frac{12}{9}=\frac{4}{3}=\frac{8}{6}> \frac{8}{7}\)

Do đó: \(\frac{1}{7}\sqrt{51}< \frac{1}{9}\sqrt{150}\)

b)

\(\sqrt{2017}-\sqrt{2016}=\frac{2017-2016}{\sqrt{2017}+\sqrt{2016}}=\frac{1}{\sqrt{2017}+\sqrt{2016}}< \frac{1}{\sqrt{2016}+\sqrt{2015}}\)

\(\sqrt{2016}-\sqrt{2015}=\frac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\frac{1}{\sqrt{2016}+\sqrt{2015}}\)

Do đó:

\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

27 tháng 9 2018

bạn ơi cho mình hỏi câu b bạn áp dụng cách nào để suy căn 2017 - căn 2016 thành phân số như vậy vậy? mình chưa hiểu rõ lắm :((

2 tháng 10 2018

\(\dfrac{1}{7}\sqrt{51}với\dfrac{1}{9}\sqrt{150}\)

<=> \(\dfrac{\sqrt{51}}{7}với\dfrac{\sqrt{150}}{9}\)

<=> \(9\sqrt{51}với7\sqrt{150}\)

<=> \(\sqrt{4131}với\sqrt{7350}\)

=> \(\sqrt{4131}< \sqrt{7350}\)

=> \(\dfrac{1}{7}\sqrt{51}< \dfrac{1}{9}\sqrt{150}\)

30 tháng 12 2015

tick đi sau làm cho

t

30 tháng 12 2015

Big hero 6 đáp án là > mà Mài hả bưởi

15 tháng 10 2019

Ta có:

\(\sqrt{2016}-\sqrt{2017}=\frac{\left(\sqrt{2016}-\sqrt{2017}\right)\left(\sqrt{2016}+\sqrt{2017}\right)}{\sqrt{2016}+\sqrt{2017}}\)

\(=\frac{2016-2017}{\sqrt{2016}+\sqrt{2017}}=-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2017}-\sqrt{2018}=\frac{\left(\sqrt{2017}-\sqrt{2018}\right)\left(\sqrt{2017}+\sqrt{2018}\right)}{\sqrt{2017}+\sqrt{2018}}\)

\(=\frac{2017-2018}{\sqrt{2017}+\sqrt{2018}}=-\frac{1}{\sqrt{2017}+\sqrt{2018}}\)

Ta thấy rằng:

\(\sqrt{2018}>\sqrt{2016}\)

\(\Leftrightarrow\sqrt{2017}+\sqrt{2018}>\sqrt{2016}+\sqrt{2017}\)

\(\Leftrightarrow\frac{1}{\sqrt{2017}+\sqrt{2018}}< \frac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\Leftrightarrow-\frac{1}{\sqrt{2017}+\sqrt{2018}}>-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)

Vậy \(\sqrt{2017}-\sqrt{2018}>\sqrt{2016}-\sqrt{2017}\)

14 tháng 10 2019

bawngf nhau

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

7 tháng 8 2017

~ ~ ~

\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\)

\(=\sqrt{\dfrac{37}{4}-\sqrt{\left(3\sqrt{5}+2\right)^2}}\)

\(=\sqrt{\dfrac{29}{4}-3\sqrt{5}}\)

\(=\sqrt{\dfrac{29-12\sqrt{5}}{4}}\)

\(=\sqrt{\dfrac{\left(2\sqrt{5}-3\right)^2}{4}}\)

\(=\dfrac{\sqrt{5}}{2}-\dfrac{3}{4}\)

\(=\dfrac{1}{2}\left(\sqrt{5}-\dfrac{3}{2}\right)\)

\(>\sqrt{5}-\dfrac{3}{2}=B\)

~ ~ ~

\(C=\dfrac{16\sqrt{36}-20\sqrt{48}+10\sqrt{3}}{\sqrt{12}}\)

\(=\dfrac{96-80\sqrt{3}+10\sqrt{3}}{\sqrt{12}}\)

\(=\dfrac{96-70\sqrt{3}}{2\sqrt{3}}\)

\(=16\sqrt{3}-35\)

\(>16\sqrt{3}-36=B\)

~ ~ ~

8 tháng 8 2017

Cau A sao sao ak ban oi