\(\frac{46-3\sqrt{39}}{4}\) và \(\sqrt{90}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

Ta có:

\(\frac{46-3\sqrt{39}}{4}< \frac{46-3\sqrt{36}}{4}=\frac{46-18}{4}=7=\sqrt{49}< \sqrt{50}.\)

11 tháng 11 2017

kết bạn với nhau được không dương

14 tháng 7 2015

 Dinh Nguyen Ha Linh bn vào câu hỏi của tôi rùi ấn sửa nội dung cho đúng đi nhé

7 tháng 9 2017

Ta có : \(\left(x-5\right)^4+\frac{14}{17}=\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\)

Vì : \(\left[\left(x-5\right)^2\right]^2\ge0\forall x\) 

Nên : \(\left[\left(x-5\right)^2\right]^2+\frac{14}{17}\ge\frac{14}{17}\forall x\)

Vậy GTNN của biểu thức là : \(\frac{14}{17}\) khi x = 5

b) Vì : \(\left(\frac{3}{7}-14x\right)^2\ge0\forall x\) 

Nên : \(\left(\frac{3}{7}-14x\right)^2-\frac{214}{979}\ge-\frac{214}{979}\forall x\)

Vậy GTNN của biểu thức là : \(-\frac{214}{979}\) khi \(\frac{3}{7}-14x=0\) \(\Rightarrow14x=\frac{3}{7}\) \(\Rightarrow x=\frac{3}{7}.\frac{1}{14}=\frac{3}{98}\)

21 tháng 10 2016

a)\(\sqrt{4}+\sqrt{14}=5,741657387\)

\(\sqrt{18}\)=4,242640687

->vay: dien dau >

b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{18}=16,23872966\)

\(\sqrt{90}=9,486832981\)

->vay : điền dấu <

21 tháng 10 2016

a)\(\sqrt{4}+\sqrt{14}\) và \(\sqrt{18}\)

ta có : \(\sqrt{18}=\sqrt{14}+\sqrt{4}\)

suy ra : \(\sqrt{4}+\sqrt{14}=\sqrt{18}\)

b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{12}\)với \(\sqrt{90}\)

ta có :\(\sqrt{90}=\sqrt{20}+\sqrt{20}+\sqrt{20}+\sqrt{30}\)

mà :\(\sqrt{20}>\sqrt{15};\sqrt{20}>\sqrt{16};\sqrt{20}>\sqrt{17};\sqrt{30}>\sqrt{12}\)

suy ra :\(\sqrt{90}\)lớn hơn

21 tháng 7 2016

Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.

21 tháng 7 2016

a) A<B

13 tháng 2 2018

a) Ta có \(\sqrt{17}\)>\(\sqrt{16}\)

             \(\sqrt{26}\)>\(\sqrt{25}\)

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{16}\)+\(\sqrt{25}\)+1

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1> 4+ 5 +1

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1 >10 hay >\(\sqrt{100}\)

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)

b) \(\frac{1}{\sqrt{1}}\)=1 >\(\frac{1}{10}\)

    \(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

....................................

   \(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{10}\)+\(\frac{1}{10}\)+...+\(\frac{1}{10}\)(có 100 số \(\frac{1}{10}\))

=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)\(\frac{100}{10}\)=10 

3 tháng 4 2018

\(a)\) Ta có : 

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

Chúc bạn học tốt ~