Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ta có:
\(=\frac{\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\right)}{2}\)
\(=\frac{\left(1-\frac{100}{3^{100}}\right)+\left(\frac{2}{3}-\frac{1}{3}\right)+...+\left(\frac{99}{3^{98}}-\frac{98}{3^{98}}\right)+\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)}{2}\)
\(=\frac{\left(1-\frac{100}{3^{100}}\right)+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)}{2}< \frac{1+\frac{1}{2}}{2}=\frac{3}{2}:2=\frac{3}{4}\)
Đpcm
ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)
\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^{101}}< \frac{1}{3}\)
\(\Rightarrow\frac{2}{3}A< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)
\(\Rightarrow A< \frac{1}{2}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{3^{99}}\)
\(A=\frac{1-\frac{1}{3^{99}}}{2}\)
Ta đặt \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Ta so sánh giữa A và C.
\(\frac{1}{3}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{3^3}< \frac{1}{3.4};....;\frac{1}{3^{99}}< \frac{1}{99.100}\Leftrightarrow A< C\)( 1 )
\(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Mà \(\frac{99}{100}< \frac{1}{2}\Rightarrow C< B\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow A< C< B\Leftrightarrow A< B\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2009}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2008}}\)
\(\Rightarrow3B-B=2B=\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2008}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2009}}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^{2009}}< 1\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\)
a)\(A=\frac{2}{3}+\frac{3}{4}.-\frac{4}{9}\)
\(A=\frac{2}{3}-\frac{1}{3}\)
\(A=\frac{1}{3}\)
b)\(B=2\frac{3}{11}.1\frac{1}{12}.\left(-2,2\right)\)
\(B=\frac{325}{132}.\left(-2,2\right)\)
\(B=-\frac{65}{12}\)
c)\(C=\left(\frac{3}{4}-0,2\right).\left(0,4-\frac{4}{5}\right)\)
\(C=\frac{11}{20}.-\frac{2}{5}\)
\(C=-\frac{11}{50}\)
Ta có:\(A=\frac{1}{3}=\frac{100}{300}\)
\(B=-\frac{65}{12}=-\frac{1625}{300}\)
\(C=-\frac{11}{50}=-\frac{660}{300}\)
Vì \(-\frac{1625}{300}< -\frac{660}{300}< \frac{100}{3}\)
Vậy \(B< C< A\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
....................
.....................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
Nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}^2< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}^2^2< 1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{99}{100}\)> \(\frac{3}{4}\)thì sao mà so sánh được
\(\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{40.10^3+7.10^3}=\frac{33.10^3}{10^3.47}=\frac{33}{47}\)
\(\frac{3774}{5217}=\frac{34}{47}\)
Do đó VT<VP
33.103/23.5.103+7000<3774/5217