K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Ta có \(\frac{2^{2007}+1}{2^{2004}+1}=\frac{2^3\left(2^{2004}+1\right)-7}{2^{2004}+1}=8-\frac{7}{2^{2004}+1}\)

\(\frac{2^{2009}+1}{2^{2006}+1}=\frac{2^3\left(2^{2006}+1\right)-7}{2^{2006}+1}=8-\frac{7}{2^{2006}+1}\)

Ta thấy \(2^{2004}+1< 2^{2006}+1\Rightarrow\frac{7}{2^{2004}+1}>\frac{7}{2^{2006}+1}\)

\(\Rightarrow8-\frac{7}{2^{2004}+1}< 8-\frac{7}{2^{2006}+1}\Rightarrow\frac{2^{2007}+1}{2^{2004}+1}< \frac{2^{2009}+1}{2^{2006}+1}\)

15 tháng 3 2017

Bài 1:

Ta có: 200920=(20092)10=403608110 ;  2009200910=2009200910

Vì 403608110< 2009200910 => 200920< 2009200910

15 tháng 3 2017

Bài 1:

Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)

         \(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)

Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)

7 tháng 10 2016

Biết nhưng ko trả lời

 

 

26 tháng 3 2017

ki bo quá nhỉ bạn ấy bỏ rùi hiha

30 tháng 11 2016

Đầu tiên bạn đi chứng minh bài toán:a>b thì \(\frac{a}{b}>\frac{a+m}{b+m}\) 

rồi áp dụng vào bài toán này

\(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2006}+7+1}{2^{2004}+7+1}=\frac{2^{2006}+8}{2^{2004}+8}=\frac{2^3\left(2^{2003}+1\right)}{2^3\left(2^{2001}+1\right)}=\frac{2^{2003}+1}{2^{2001}+1}\)

Vậy \(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2003}+1}{2^{2001}+1}\)

Đấy thế là xong!

19 tháng 2 2017

A B C D 30 m 675 m^2 E

Đặt các điểm như hình trên thì AB = 0,6 CD ; AB + 30 m = CD (BE = 30 m) ; SABCD + 675 m2 = SAECD (SBEC = 675 m2)

AECD là hình chữ nhật nên CE là đường cao tam giác BEC ; CE = AD 

=> AD = 2 x SBEC : BE = 2 x 675 : 30 = 45 (m)
AB + 30 m = CD mà AB = 0,6 CD nên 0,6 CD + 30 m = CD => 0,4 CD = 30 m => CD = 75 m => AB = 45 m 

=> SABCD = (AB + CD) x AD : 2 = (75 + 45) x 45 : 2 = 2700 (m2)

7 tháng 10 2016

Ta có: \(\frac{2^{2008}-3}{2^{2007}-1}=\frac{\left(2^{2008}-2\right)-1}{2^{2007}-1}=\frac{2\left(2^{2007}-1\right)-1}{2^{2007}-1}=2-\frac{1}{2^{2007}-1}\)

CMTT ta có \(\frac{2^{2007}-3}{2^{2006}-1}=2-\frac{1}{2^{2006}-1}\)

MÀ 22006-1<22007-1 => \(\frac{1}{2^{2006}-1}>\frac{1}{2^{2007}-1}\Rightarrow2-\frac{1}{2^{2006}-1}< 2-\frac{1}{2^{2007}-1}\)

Từ đó \(\Rightarrow\frac{2^{2008}-3}{2^{2007}-1}>\frac{2^{2007}-3}{2^{2006}-1}\)

11 tháng 5 2016

Đề của bạn sai rồi: Phải là B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) chứ ?!

batngo

11 tháng 5 2016

ukm máy nó bị cke mất

21 tháng 7 2016

Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.

\(S_n=\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^n}\)

Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)

\(=\left(1+\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}\right)-\left(\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}+\frac{1}{a^n}\right)\)

\(=1-\frac{1}{a^n}< 1\Rightarrow S_n< \frac{1}{a-1}\left(1\right)\)

Áp dụng BĐT ( 1 ) cho \(a=2008\)và mọi n bằng 2 , 3 , ..... , 2007, ta được:

\(B=\frac{1}{2008}+\left(\frac{1}{2008}+\frac{1}{2008^2}\right)^2+...+\left(\frac{1}{2008}+\frac{1}{2008^2}+...+\frac{1}{2008^{2007}}\right)^{2007}< \frac{1}{2007}\)

\(+\left(\frac{1}{2007}\right)^2+...+\left(\frac{1}{2007}\right)^{2007}\left(2\right)\)

Lại áp dụng BĐT ( 1 ) cho \(a=2007\)và \(n=2007\), ta được:

\(\frac{1}{2007}+\frac{1}{2007^2}+...+\frac{1}{2007^{2007}}< \frac{1}{2006}=A\left(3\right)\)

Từ ( 2 ) và ( 3 ) => \(B< A.\)