\(\frac{2^{2006}+7}{2^{2004}+7}\)và \(\frac{2^{2003}+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)

\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)

\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)

\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)

Vậy \(A< B\)

11 tháng 9 2016

\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)

\(< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)

\(< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)

\(< \frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)

\(< \frac{1}{2^2.3.5^2.7}\)

4 tháng 1 2016

\(B=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}<\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{103.104}\)

Tính VP ra là được 

4 tháng 1 2016

A<1/100.101+1/101.102+..+1/104.105

=> A<1/100-1/105=1/2100

Ma B=1/2100

=> A<B

19 tháng 7 2021

khó quá

 

1 tháng 10 2017

an vo cai nay la vo tra loi

http://360game.vn/landing-360game/dck/webgame-tien-hiep-moi-nhat-2017-sound?utm_content=M05_DCK-m05_FC-3&utm_medium=LifeMedia&utm_source=SSP&utm_campaign=210917_CB&utm_term=DCK&from3rd=LifeMedia&sid=none&err=1

30 tháng 11 2016

Đầu tiên bạn đi chứng minh bài toán:a>b thì \(\frac{a}{b}>\frac{a+m}{b+m}\) 

rồi áp dụng vào bài toán này

\(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2006}+7+1}{2^{2004}+7+1}=\frac{2^{2006}+8}{2^{2004}+8}=\frac{2^3\left(2^{2003}+1\right)}{2^3\left(2^{2001}+1\right)}=\frac{2^{2003}+1}{2^{2001}+1}\)

Vậy \(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2003}+1}{2^{2001}+1}\)

Đấy thế là xong!

19 tháng 2 2017

A B C D 30 m 675 m^2 E

Đặt các điểm như hình trên thì AB = 0,6 CD ; AB + 30 m = CD (BE = 30 m) ; SABCD + 675 m2 = SAECD (SBEC = 675 m2)

AECD là hình chữ nhật nên CE là đường cao tam giác BEC ; CE = AD 

=> AD = 2 x SBEC : BE = 2 x 675 : 30 = 45 (m)
AB + 30 m = CD mà AB = 0,6 CD nên 0,6 CD + 30 m = CD => 0,4 CD = 30 m => CD = 75 m => AB = 45 m 

=> SABCD = (AB + CD) x AD : 2 = (75 + 45) x 45 : 2 = 2700 (m2)

1 tháng 1 2020

Ta có: \(A=\frac{1}{101^2}+\frac{1}{102^2}+......\frac{1}{105^2};\frac{1}{2^2.3.5^2.7}\)

\(A>\frac{1}{\left(101.101\right)}+\frac{1}{\left(101.102\right)}+\frac{1}{\left(102.103\right)}+......\frac{1}{\left(104.105\right)}\)

Ta thấy mỗi mẫu đều < thì => sẽ lớn hơn

\(A>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+........\)

\(A>\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{\left(2^2.3.5^2.7\right)}=B\)

=> gọi vế \(\frac{1}{\left(2^2.2.5^2.7\right)}\) là B

=> A>B

1 tháng 1 2020

\(\text{Ta có :}\)\(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{100.101}+\frac{1}{101.102}+.....+\frac{1}{105.106}\)

                \(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+....+\frac{1}{105}-\frac{1}{106}\)\

               \(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{100}-\frac{1}{105}\)

              \(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{2100}\)

             \(\text{Mà :}\)\(\frac{1}{2100}=\frac{1}{2^2.3.5^2.7}\)

             \(\text{Nên:}\)\(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{2^2.3.5^2.7}\)