Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề là thế này nè :
So sánh : \(\frac{2014}{2015}+\frac{2015}{2016}\)và \(\frac{666666}{333333}\)
Ta có :
\(\frac{2014}{2015}< 1\); \(\frac{2015}{2016}< 1\)
\(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}< 1+1=2\)( 1 )
Mà \(\frac{666666}{333333}=2\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}< \frac{666666}{333333}\)
huyền làm sai rồi!
2014/2015+2015/2014=2014/2015+1/1/2014 chứ có phải là +1/2015 đâu!
Ta có :
2014/2015=2015/2014
=(2014/2015+1/2015)+(2015/2014-1/2014)
=1+1
=(1/2014+1/2015)
=2+(1/2014+1/2015)
=) 2014/2015
=2015/2014 > 2 mà 333333/666665 < 2
Vậy 2014/2015=2015/2014 > 333333/666665
2014/2015=2015/2014=(2014/2015+1/2015)+(2015/2014-1/2014)
=1+1=(1/2014+1/2015)=2+(1/2014+1/2015)
=) 2014/2015=2015/2014 lớn hơn 2 nhưng 333333/666665 nhỏ hơn 2
Vậy 2014/2015=2015/2014 lớn hơn 333333/666665
Ta có :
\(\frac{666665}{333333}< \frac{666666}{333333}=2\text{ hay }\frac{666665}{333333}=2-\frac{1}{333333}\)
Lại có :
\(\frac{2014}{2015}+\frac{2015}{2014}=\left(1-\frac{1}{2015}\right)+\left(1+\frac{1}{2014}\right)\)
\(=\left(1+1\right)+\left(\frac{1}{2014}-\frac{1}{2015}\right)=2-\frac{1}{4058210}\)
Vì \(\frac{1}{333333}>\frac{1}{4058210}\Rightarrow2-\frac{1}{333333}< 2-\frac{1}{4058210}\)
\(\Rightarrow\frac{666665}{333333}< \frac{2014}{2015}+\frac{2015}{2014}\)
Mình nhầm xíu :
Ta có :
\(\frac{666665}{333333}< \frac{666666}{333333}=2\)
Lại có :
\(\frac{2014}{2015}+\frac{2015}{2014}=\left(1-\frac{1}{2015}\right)+\left(1+\frac{1}{2014}\right)\)
\(=\left(1+1\right)+\left(\frac{1}{2014}-\frac{1}{2015}\right)=2+\frac{1}{4058210}>2\)
\(\text{VÌ }\frac{666665}{333333}< 2< \frac{2014}{2015}+\frac{2015}{2014}\)
\(\Rightarrow\frac{666665}{333333}< \frac{2014}{2015}+\frac{2015}{2014}\)
Ta có:
\(10A=\frac{10^{2015}+20200}{10^{2015}+2020}=1+\frac{18180}{10^{2015}+2020}\)
\(10B=\frac{10^{2016}+20200}{10^{2016}+2020}=1+\frac{18180}{10^{2016}+2020}\)
Vì \(10^{2016}+2020>2^{2015}+2020\)
=> \(\frac{18180}{10^{2016}+2020}< \frac{18180}{10^{2015}+2020}\)
=> \(1+\frac{18180}{10^{2016}+2020}< 1+\frac{18180}{10^{2015}+2020}\)
=> 10B < 10A
=> B<A
Bài 1 : dễ bạn tự làm được :)
Bài 2 :
Ta có :
\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có : B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì : 2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~