\(\frac{1}{\frac{2}{3}}\)và \(\frac{\frac{1}{2}}{3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

A. >

B . <

C. > 

D. =

hok tốt

13 tháng 9 2018

a.>

b.<

c.>

d.=

19 tháng 7 2018

a) ta có: \(A=\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)

\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)

\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)

\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)

=> A < B

19 tháng 7 2018

a)A= 2017*2018/2017*2018-1/2017*2018=1-1/2017*2018

    B = 2018*2019/2018*2019-1/2018*2019=1-1/2018*2019

vì 1/2017*2018>1/2018*2019=> A<B

b)

17 tháng 8 2018

122 =14 

          132 <12.3 

            .............

           11002 <199.100 

⇒A<14 +12.3 +....+199.100 

⇒A<14 +12 −13 +...+199 −1100 

⇒A<14 +12 −1100 

⇒A<14 <34 

17 tháng 8 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{100\cdot101}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(A>\frac{1}{2}-\frac{1}{101}=\frac{99}{202}>\frac{2}{3}\)

\(\Rightarrow A>\frac{2}{3}\)

25 tháng 9 2021

help me!!!

17 tháng 5 2021

                                                                     \(Giải\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)\(+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2014}\)

      \(A=0+0+0+...+0+0\)

      \(\Rightarrow A=0\)   

\(a.\)\(A< 1\)

b.   \(A< \frac{3}{4}\)

26 tháng 6 2017

Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)

            \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)

Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)

Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

28 tháng 8 2017

Cho biểu thức A= 11×2×3 12×3×4 13×

4×5 +...+ 118×19×20 . So sánh A với 14 .

avt1312778_60by60.jpgDương Đình Hưởng

cố lên mà k

16 tháng 7 2020

\(A=\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{2012\times2014}\)

\(=\frac{1}{2}\times(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+...+\frac{2}{2012\times2014})\)

\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2012}-\frac{1}{2014})\)

\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{2014})\)

\(=\frac{1}{2}\times(\frac{1007}{2014}-\frac{1}{2014})\)

\(=\frac{1}{2}\times\frac{503}{1007}\)

\(=\frac{503}{2014}\)

Ta có ; \(\frac{1}{2}=\frac{1007}{2014}\)

Vậy A bé hơn B

Chúc bạn học tốt