Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{3}=\frac{8}{12}\) ; \(\frac{1}{4}=\frac{3}{12}\)
mà 8 > 3 ⇒ \(\frac{8}{12}>\frac{3}{12}\)⇒\(\frac{2}{3}>\frac{1}{4}\)
b) \(\frac{7}{10}\) và \(\frac{7}{8}\); mà 10 > 8 ⇒ \(\frac{7}{10}< \frac{7}{8}\)
c) \(\frac{6}{7}=\frac{30}{35}\); \(\frac{3}{5}=\frac{21}{35}\)
mà 30 > 21 ⇒ \(\frac{30}{35}>\frac{21}{35}\)⇒\(\frac{6}{7}>\frac{3}{5}\)
d) \(\frac{14}{21}=\frac{2}{3}\); \(\frac{60}{72}=\frac{5}{6}\)
\(\frac{2}{3}=\frac{4}{6}\) ⇒ \(\frac{2}{3}< \frac{5}{6}\)⇒ \(\frac{14}{21}< \frac{60}{72}\)
e) \(\frac{38}{133}=\frac{2}{7}\); \(\frac{129}{344}=\frac{3}{8}\)
\(\frac{2}{7}=\frac{16}{56}\) ; \(\frac{3}{8}=\frac{21}{56}\) mà 16<21 ⇒ \(\frac{16}{56}< \frac{21}{56}\)⇒ \(\frac{38}{133}< \frac{129}{344}\)
f) \(\frac{11}{54}=\frac{22}{108}\)và \(\frac{22}{37}\) mà 108 > 37 ⇒ \(\frac{22}{108}< \frac{22}{37}\)⇒ \(\frac{11}{54}< \frac{22}{37}\)
B = \(\frac{2^3.5.7.5^2.7^3}{\left(2.5.7^2\right)^2}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=\frac{2.5.1}{1.1.1}=10\)
C = \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{1}{2}\left(\frac{33}{99}-\frac{1}{99}\right)=\frac{1}{2}.\frac{32}{99}=\frac{16}{99}\)
\(A=\frac{1}{3}.\frac{-9}{10}.\frac{-6}{13}.\frac{-13}{36}=\frac{-3}{10}.\frac{-1}{6}=\frac{1}{20}\)
\(B=\frac{4}{19}\left(\frac{-5}{12}+\frac{-7}{12}\right)-\frac{40}{57}=\frac{-4}{19}-\frac{40}{57}=\frac{-52}{57}\)
2 câu còn lại tự làm
\(A=\frac{1}{3}.\frac{-6}{13}.\frac{-9}{10}.\frac{-13}{36}\)
\(A=\frac{1}{1}.\frac{-2}{13}.\frac{-9}{10}.\frac{-13}{36}\)
\(A=\frac{-2}{13}.\frac{-9}{10}.\frac{-13}{36}\)
\(A=\frac{-1}{13}.\frac{-9}{5}.\frac{-13}{36}\)
\(A=\frac{-1}{13}.\frac{-1}{5}.\frac{-13}{4}\)
\(A=\frac{-13}{260}=\frac{-1}{20}\)
\(A=1+\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}\)
\(A=1+2^2\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+..+\frac{1}{2009^2}\right)\)
Ta có: \(\frac{1}{3^2}< \frac{1}{1.3};\frac{1}{5^2}< \frac{1}{3.5};\frac{1}{7^2}< \frac{1}{5.7};...;\frac{1}{2009^2}< \frac{1}{2007.2009}\)
\(\Rightarrow A< 1+4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{2007.2009}\right)\)
\(=1+4\cdot\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)
\(=1+2\left(1-\frac{1}{2009}\right)=3-\frac{2}{2009}< 3\)
\(\Rightarrow A< 3\)
Từ đề ài ta có, M=1/31+1/32+1/33+.......+1/60, ta sẽ phân tích M thành phân số lớn hơn.
Vậy phân số lớn hơn M là 1/30+1/31+1/32+......+1/60
Có: (1/30+1/30+1/30+....+1/30)+(1/40+1/40+....+1/40)+(1/50+1/50+....+1/50)=1/3+1/4+1/5=47/60
Vì 47/60 lớn hơn M mà bé hơn 4/5 nên M bé hơn 4/5.(tính chất bắc cầu)
tính ra rồi so sánh
1/6 + - 3/4 = -7/12
1/14 + - 4/7 = -7/14 = - 1/2
=> -7/14 < - 1/2
<=> 1/6 + - 3/4 < 1/14 + - 4/7