\(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{56}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{55}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{55}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{56}}\right)\)

\(A=1-\frac{1}{2^{56}}< 1\)

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)

    

14 tháng 5 2017

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};......;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-1\right)n}\)

Ta lại có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+.....+\frac{1}{n\left(n-1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}< 1\) (đpcm)

26 tháng 4 2018

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\frac{1}{2}+...+\left(\frac{1}{2^{98}}\right)\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2^{99}}>-\frac{1}{2}>A\)

\(\Rightarrow B>A\)

28 tháng 12 2016

\(A=\frac{1}{\left(2n\right)^2}< \frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)=B\)

2B=1-1/(2n+1)

B=1/2-1/{2.(2n+1)Ư

KL A<1/2

8 tháng 1 2017

Câu hỏi hay đó nhưng mình ko biết cách làm

26 tháng 2 2020

\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot...\left(\frac{1}{10}-1\right)\)

\(A=\left(\frac{1}{2}-\frac{2}{2}\right)\left(\frac{1}{3}-\frac{3}{3}\right)\cdot...\cdot\left(\frac{1}{10}-\frac{10}{10}\right)\)

\(A=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{9}{10}\right)\)

\(A=\frac{-1}{2}\cdot\frac{-2}{3}\cdot...\cdot\frac{-9}{10}\)

\(A=\frac{\left(-1\right)\cdot\left(-2\right)\cdot...\cdot\left(-9\right)}{2\cdot3\cdot...\cdot10}\)

\(A=\frac{\left(-1\right)\cdot2\cdot...\cdot9}{2\cdot3\cdot...\cdot10}=\frac{-1}{10}\)

Mà \(\frac{-1}{10}>\frac{-1}{9}\)nên A > -1/9

Phần cuối tương tự

26 tháng 10 2017

Ta có:

a=\(\left(\frac{-1}{2^2}\right).\left(\frac{-1}{3^2}\right)......\left(\frac{-1}{100^2}\right)=\left(\frac{\left(-1\right).\left(-1\right).......\left(-1\right)}{2^2.3^2........100^2}\right)\)

Vì có 98 phân số

=> có 98 số -1 nhân với nhau

=> tích của 98 số -1 =1 vì số số hạng của nó là số chẵn

=>\(\left(\frac{-1}{2^2}\right).\left(\frac{-1}{3^2}\right)......\left(\frac{-1}{100^2}\right)=\left(\frac{\left(-1\right).\left(-1\right).......\left(-1\right)}{2^2.3^2........100^2}\right)\)

=\(\frac{1}{2^2.3^2.......100^2}>0\)

mà \(\frac{-1}{2}< 0\)

=>\(\frac{-1}{2}< \frac{1}{2^2.3^2.............100^2}\)

26 tháng 4 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)(99 số hạng)

\(\Rightarrow A=\left(\frac{-3}{4}\right)\left(\frac{-8}{9}\right)...\left(\frac{-9999}{10000}\right)\)

\(\Rightarrow-A=\frac{3}{4}.\frac{8}{9}...\frac{9999}{10000}\)

\(\Rightarrow-A=\frac{1.3.2.4....99.101}{2.2.3.3.4.4...100.100}\)

\(\Rightarrow-A=\frac{1.2.3...99}{2.3...100}.\frac{2.3.4...101}{2.3.4...100}\)

\(\Rightarrow-A=\frac{1}{100}.101=\frac{101}{100}\)

\(\Rightarrow A=-\frac{101}{100}< -\frac{50}{100}=-\frac{1}{2}\)