Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{101}+\frac{1}{102}+............+\frac{1}{199}+\frac{1}{200}\)
Chứng tỏ A<\(\frac{5}{6}\)
Ta có:
\(\frac{1}{101}\)>\(\frac{1}{200}\)
\(\frac{1}{102}\)>\(\frac{1}{200}\)
\(\frac{1}{103}\)>\(\frac{1}{200}\)
...
\(\frac{1}{200}\)=\(\frac{1}{200}\)
\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)
\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{102}\) (đpcm)
Ta có :
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(A=\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}\right)\)
\(A>\left(\frac{1}{150}+\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\)
\(A>50.\frac{1}{150}+50\frac{1}{200}\)
\(A>\frac{50}{150}+\frac{50}{200}\)
\(A>\frac{1}{3}+\frac{1}{4}\)
\(A>\frac{7}{12}\)
Vậy \(A>\frac{7}{12}\)
Chúc bạn học tốt ~
Ta có:\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100\)
hay A>\(\frac{7}{12}\)
A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100\)
hay A>\(\frac{5}{8}\)
mình ko biết có đúng ko bạn xem kĩ nhé
ko pit