K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2022

\(\dfrac{2004.2005-1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

\(\dfrac{2005.2006-1}{2004.2006}=1-\dfrac{1}{2005.2006}\)

\(Vì\dfrac{1}{2004.2005}>\dfrac{1}{2005.2006}\Rightarrow1-\dfrac{1}{2004.2005}< 1-\dfrac{1}{2005.2006}\Rightarrow\dfrac{2004.2005-1}{2004.2005}< \dfrac{2005.2006-1}{2004.2006}\)

5 tháng 3 2022

Mình cảm ơn

11 tháng 7 2017

\(\frac{2004.2005+2006.6-6}{2005.197+4.2005}\)\(\frac{2004.2005+\left(2006-1\right).6}{2005.\left(197+4\right)}\)\(\frac{2004.2005+2005.6}{2005.201}\)\(\frac{\left(2004+6\right).2005}{2005.201}\)

\(\frac{2010}{201}\)\(10\)

16 tháng 7 2017

Đặt \(A=\dfrac{2003.2004-1}{2003.2004}\)\(B=\dfrac{2004.2005-1}{2004.2005}\)

Ta có : \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}\)

\(=1-\dfrac{1}{2003.2004}\)

\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}\)

\(=1-\dfrac{1}{2004.2005}\)

\(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)

Nên \(A< B\)

Vậy \(\dfrac{2003.2004-1}{2003.2004}< \dfrac{2004.2005-1}{2004.2005}\)

~ Học tốt ~

22 tháng 4 2017

A > B nhé

A = 20042005 / 20042005 - 2004 + 1 / 20042005 - 2004

B = 20042005 / 20042005 +2004

Ta có B < 20042005 / 20042005 - 2004 ( tử bằng nhau, mẫu B lớn hơn) >> A > B ( ng` ta thêm 1 vào hack não hs thôi )

22 tháng 4 2017

Tuy mk chỉ học lớp 5 nhưng mk cũng sẽ thử đoán nha ! 

Chắc là A = B 

nếu đúng thì tk cho mk nha !

27 tháng 2 2018

a) Ta có: \(\frac{n}{n-3}\)có tử số lớn hơn mẫu số. \(\Rightarrow\frac{n}{n-3}>1\)

Ta lại có: \(\frac{\left(n+1\right)}{n+2}< 1\)( vì \(\frac{\left(n+1\right)}{n+2}\) có tử bé hơn mẫu)

\(\Rightarrow\frac{n}{n-3}>\frac{\left(n+1\right)}{n+2}\)

b) 

Mà: \(\frac{2003.2004-1}{2003.2004}=1\)( Loại hai số giống nhau ở cả tử và mẫu: 2003 , 2004)

Còn: \(\frac{2004.2005-1}{2004.2005}=1\)

\(\Rightarrow\frac{2003.2004-1}{2003.2004}=\frac{2004.2005-1}{2004.2005}\)

P/s: Mình không chắc câu b) Nhé

27 tháng 2 2018

Ta thấy : n > n - 3

=> \(\frac{n}{n-1}>1\)

Có : n + 1 < n + 2

=> \(\frac{n+1}{n+2}< 1\)

=> \(\frac{n}{n-3}>\frac{n+1}{n+2}\)

22 tháng 4 2017

\(A=\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}=B\)

Vậy A > B

2 tháng 5 2017

Ta có :

\(\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}\)

\(\Rightarrow\) \(A>1>B\)

\(\Rightarrow\) \(A>B\)

22 tháng 5 2016

\(2005A=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)

\(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)

vì 20052006+1>20052005+1

\(\Rightarrow\frac{4}{2005^{2006}+1}< \frac{4}{2005^{2005}+1}\)

\(\Rightarrow1+\frac{4}{2005^{2006}+1}< 1+\frac{4}{2005^{2005}+1}\)

=>A<B

22 tháng 5 2016

sai đề bài

Cho A=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\); B=\(\dfrac{2003+2004}{2004+2005}\)

Ta có: B=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)

Vì: \(\dfrac{2003}{2004+2005}< \dfrac{2003}{2004}\)

\(\dfrac{2004}{2004+2005}< \dfrac{2004}{2005}\)

=>\(\dfrac{2003}{2004+2005}+\dfrac{2004}{2004+2004}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)

=>\(\dfrac{2003+2004}{2004+2005}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)

=>B<A

Vậy B<A

14 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{2005^{2005}+1}{2005^{2006}+1}< 1\)

\(A< \dfrac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\Rightarrow A< \dfrac{2005^{2005}+2005}{2005^{2006}+2005}\Rightarrow A< \dfrac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}\Rightarrow A< \dfrac{2005^{2004}+1}{2005^{2005}+1}=B\)

\(A< B\)

14 tháng 7 2017

Ta có : A = \(\dfrac{2005^{2005}+1}{2005^{2006}+1}\)

\(2005\)A = \(\dfrac{\left(2005^{2005}+1\right).2005}{2005^{2006}+1}\)

\(2005\)\(A\)= \(\dfrac{2005^{2006}+2005}{2005^{2006}+1}\)

\(2005\)\(A\)= \(\dfrac{2005^{2006}+1+2004}{2005^{2006}+1}\)

\(2005A=\dfrac{2005^{2006}+1}{2005^{2006}+1}+\dfrac{2004}{2005^{2006}+1}\)

\(2005A=1+\dfrac{2004}{2005^{2006}+1}\)

Tương tự như vậy với \(B\) ta đc

\(2005B=1+\dfrac{2004}{2005^{2005}+1}\)

\(2005^{2006}+1>2005^{2005}+1\)

\(=>\) \(1+\dfrac{2004}{2005^{2006}+1}\)\(< \)\(1+\dfrac{2004}{2005^{2005}+1}\)

\(=>\)\(2005A< 2005B\)

\(=>\)\(A< B\)

Vậy \(A< B\)