Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)
\(2A-A=1-\frac{1}{2^{50}}\)
\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1
tương tự nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}< 1\)
\(M=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)
\(4M=\frac{4}{4}+\frac{4}{4^2}+...+\frac{4}{4^{1000}}\)
\(4M=1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{4^{999}}\)
\(4M-M=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\right)\)
\(3M=1-\frac{1}{4^{1000}}\)
\(M=\left(1-\frac{1}{4^{1000}}\right):3\)
\(M=\frac{4^{1000}-1}{4^{1000}}:3\)
\(M=\frac{4^{1000}-1}{3.4^{1000}}\)
\(\frac{1}{3}=\frac{4^{1000}}{3.4^{1000}}\)
vì \(\frac{4^{1000}-1}{4^{1000}}< \frac{4^{1000}}{3.4^{1000}}\)
nên \(M< \frac{1}{3}\)
Đặt \(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+.....+\frac{1}{4^{1000}}\)
\(=>4A=1+\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{999}}\)
\(=>4A-A=\left(1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{1000}}\right)\)
\(=>3A=1-\frac{1}{4^{1000}}=>A=\frac{1-\frac{1}{4^{1000}}}{3}=\frac{1}{3}-\frac{1}{\frac{4^{1000}}{3}}<\frac{1}{3}\)
Vậy.......................
a,A=0,(000001).48571=1/999999.428571=3/7=B
b,C=0,(01).17+0,(01).82=0,(01).(17+82)=99/99=1=D
c,D=2332<2333=8111<9111=3222<3223
d,4F=1+1/4...+1/4999
=>4F-F=1-1/41000
=>3F=1-1/41000<1
=>F<1/3=>F<G
\(A=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{1000}}\)
\(\Rightarrow4A=4\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{1000}}\right)\)
\(\Rightarrow4A=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)
\(\Rightarrow4A-A=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-...-\frac{1}{4^{999}}-\frac{1}{4^{1000}}\)
\(\Rightarrow3A=1-\frac{1}{4^{1000}}\)
\(\Rightarrow A=\frac{1-\frac{1}{4^{1000}}}{3}\)
làm tiếp nhé ...okok
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
....................
.....................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
Nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}^2< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}^2^2< 1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{99}{100}\)> \(\frac{3}{4}\)thì sao mà so sánh được
Ta có :
\(C=\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\)
\(\Rightarrow4C=1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\)
\(\Rightarrow4C-C=\left(1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\right)\)
\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)
\(\Rightarrow C=\frac{1}{3}-\frac{1}{3.4^{1000}}< \frac{1}{3}\)
=> C < 1 / 3
Ta có:
\(C=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)
\(\Rightarrow4C=1+\frac{1}{4}+...+\frac{1}{4^{999}}\)
\(\Rightarrow4C-C=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\right)\)
\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)
\(\Rightarrow C=\left(1-\frac{1}{4^{1000}}\right).\frac{1}{3}\)
\(\Rightarrow C=\frac{1}{3}-\frac{1}{4^{1000}.3}\)
Mà \(\frac{1}{3}>\frac{1}{3}-\frac{1}{4^{1000}.3}\)
\(\Rightarrow C< \frac{1}{3}\)
Vậy \(C< \frac{1}{3}\)