Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(a=\sqrt{2+\sqrt{3}}=\sqrt{\frac{4+2\sqrt{3}}{2}}=\sqrt{\frac{(\sqrt{3}+1)^2}{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}=b\)
b)
\( b=\sqrt{5-\sqrt{12+1+2\sqrt{12}}}=\sqrt{5-\sqrt{(\sqrt{12}+1)^2}}\)
\(=\sqrt{5-(\sqrt{12}+1)}=\sqrt{4-\sqrt{12}}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{3+1-2\sqrt{3}}=\sqrt{(\sqrt{3}-1)^2}=\sqrt{3}-1=c\)
c)
\(\sqrt{n+2}>\sqrt{n+1}; \sqrt{n+1}> -\sqrt{n}\)
\(\Rightarrow \sqrt{n+2}+\sqrt{n+1}> \sqrt{n+1}-\sqrt{n}\)
\(\sqrt{n+2}-\sqrt{n+1}=\frac{1}{\sqrt{n+2}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(=\sqrt{n+1}-\sqrt{n}\)
mình chỉ giải được phần này thôi
b.A = \(\sqrt{17}\)+\(\sqrt{26}\)+ 1 > \(\sqrt{16}\)+\(\sqrt{25}\)+ 1 = 4 + 5 +1 = 10
B = \(\sqrt{99}\)<\(\sqrt{100}\)= 10
=> A > B
A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
\(A^3=n+1+n-1+3\sqrt[3]{n+1}.\sqrt[3]{n-1}\left(\sqrt[3]{n+1}+\sqrt[3]{n-1}\right)=2n+3\sqrt[3]{\left(n-1\right)\left(n+1\right)}\left(\sqrt[3]{n+1}+\sqrt[3]{n-1}\right)\)Vì n >=1 nên A3 > B3 => A > B
Điều kiện: \(n\ge1\)
\(B^2=\left(2\sqrt{n}\right)^2=4n\)
\(A^2=n-1+n+1+2\sqrt{\left(n-1\right)\left(n+1\right)}=2n+2\sqrt{n^2-1}\)
\(< 2n+2\sqrt{n^2}=2n+2\left|n\right|=2n+2n=4n=B^2\)
\(\Rightarrow A< B\)(vì A;B > 0)