K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)

=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\) 

=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)

6 tháng 3 2016

cái này dễ lắm chỉ là chưa để ý thôi:

a,1/101>1/102>...>1/199>1/200

=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1

các phần khác làm tương tự

đánh mỏi tay quá duyệt luôn đi

16 tháng 3 2019

cái này ở trong học tốt toán 6 đúng không

18 tháng 3 2021

i

help me

9 tháng 3 2017

tất nhiên M=N

11 tháng 11 2021

chịu nhá

9 tháng 3 2017

Ta có :

\(\frac{1}{101}>\frac{1}{150}\)

\(\frac{1}{102}>\frac{1}{150}\)

\(\frac{1}{103}>\frac{1}{150}\)

\(..............\)

\(\frac{1}{150}=\frac{1}{150}\)

Cộng vế với vết ta được :

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\) (có 50 số hạng \(\frac{1}{150}\) ) \(=\frac{50}{150}=\frac{1}{3}\) \(\left(1\right)\)

Ta lại có :

\(\frac{1}{151}>\frac{1}{200}\)

\(\frac{1}{152}>\frac{1}{200}\)

\(\frac{1}{153}>\frac{1}{200}\)

\(............\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vết ta được :

\(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)(có 50 số hạng \(\frac{1}{200}\) ) \(=\frac{50}{200}=\frac{1}{4}\) \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)