Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2017}-2\sqrt{2016}=\sqrt{2017}-\sqrt{8064}< 0< \sqrt{2016}\)
b) \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=8=\sqrt{64}>\sqrt{61}\)
c) \(\left(\sqrt{2016}+\sqrt{2014}\right)^2=4030+\sqrt{2014.2016}\)
\(\left(2\sqrt{2015}^2\right)=4030+\sqrt{2015.2015}\)
C/m được: \(\sqrt{2014.2016}< \sqrt{2015.2015}\)
\(\Rightarrow\left(\sqrt{2016}+\sqrt{2014}\right)^2< \left(2\sqrt{2015}\right)^2\)
\(\Rightarrow\sqrt{2014}+\sqrt{2016}< 2\sqrt{2015}\)
d) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=7=8-1=\sqrt{64}-1< \sqrt{65}-1\)
\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)
\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)
\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)
\(=2017\cdot2016-2\)
\(\Rightarrow2015\cdot2018< 2016\cdot2017\)
\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)
có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn
a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)
\(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)
\(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)
Vậy x < y
Ta có: \(\hept{\begin{cases}\sqrt{0,2}>0\\1=\sqrt{1}< \sqrt{3}\Rightarrow1-\sqrt{3}< 0\end{cases}\Rightarrow1-\sqrt{3}< \sqrt{0,2}}\)
Ta có: \(\hept{\begin{cases}\sqrt{0,5}>0\\\sqrt{3}< \sqrt{4}=2\Rightarrow\sqrt{3}-2< 0\end{cases}\Rightarrow\sqrt{0,5}>\sqrt{3}-2}\)
Ta có :
\(\left(\sqrt{2015}+\sqrt{2017}\right)^2=2015+2\sqrt{2015.2017}+2017=8064+2\sqrt{2015.2017}\)
\(\left(2\sqrt{2016}\right)^2=8064\)
Vì \(\left(\sqrt{2015}+\sqrt{2017}\right)^2>\left(2\sqrt{2016}\right)^2\) nên \(\sqrt{2015}+\sqrt{2017}>2\sqrt{2016}\)
Vậy...
Chúc bạn học tốt ~
~ ~ ~
\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\)
\(=\sqrt{\dfrac{37}{4}-\sqrt{\left(3\sqrt{5}+2\right)^2}}\)
\(=\sqrt{\dfrac{29}{4}-3\sqrt{5}}\)
\(=\sqrt{\dfrac{29-12\sqrt{5}}{4}}\)
\(=\sqrt{\dfrac{\left(2\sqrt{5}-3\right)^2}{4}}\)
\(=\dfrac{\sqrt{5}}{2}-\dfrac{3}{4}\)
\(=\dfrac{1}{2}\left(\sqrt{5}-\dfrac{3}{2}\right)\)
\(>\sqrt{5}-\dfrac{3}{2}=B\)
~ ~ ~
\(C=\dfrac{16\sqrt{36}-20\sqrt{48}+10\sqrt{3}}{\sqrt{12}}\)
\(=\dfrac{96-80\sqrt{3}+10\sqrt{3}}{\sqrt{12}}\)
\(=\dfrac{96-70\sqrt{3}}{2\sqrt{3}}\)
\(=16\sqrt{3}-35\)
\(>16\sqrt{3}-36=B\)
~ ~ ~