\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

A=(3+1)(32+1)(34+1)(38+1)(316+1)

=>2A=2.(3+1)(32+1)(34+1)(38+1)(316+1)

=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)

=(32-1)(32+1)(34+1)(38+1)(316+1)

=(34+1)(34+1)(38+1)(316+1)

=(38-1)(38+1)(316+1)

=(316-1)(316+1)

=332-1

=>A=\(\frac{3^{32}-1}{2}<3^{32}-1\)

vậy A<B

18 tháng 7 2016

Từ công thức:\(1+2+........+n=\frac{n.\left(n+1\right)}{2}\)

Cho \(n\in\)N*.CMR:\(\frac{1}{n}.\left(1+2+...+n\right)=\frac{n+1}{2}\)

Ta có:\(\frac{1}{n}.\left(1+2+......+n\right)=\frac{1}{n}.\frac{n\left(n+1\right)}{2}=\frac{n+1}{2}\)

Ta có:\(1+\frac{1}{2}\left(1+2\right)+......+\frac{1}{20}.\left(1+2+.....+20\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3.\left(3+1\right)}{2}+........+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)

\(=1+\frac{3}{2}+...............+\frac{21}{2}\)

\(=\frac{2+3+......+21}{2}\)

\(=\frac{230}{2}=165\)

9 tháng 8 2015

\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\cdot\cdot\frac{2016^2-1}{2016^2}=\frac{1.3}{2.3}\cdot\frac{2.4}{3.3}\cdot\cdot\cdot\cdot\frac{2015.2017}{2016.2016}\)

\(=\frac{\left(1.2.3....2015\right).\left(3.4....2016.2017\right)}{\left(2.3....2016\right)\left(2.3......2015.2016\right)}=\frac{2017}{2.2016}=\frac{2017}{4032}\)

16 tháng 8 2016

a) số số x là 4 nên ta có:

(x.4)+1/2+1/4+1/8+1/16=1 mà 1/2+1/4+1/8+1/16=15/16 nên x=1-15/16=1/16:4=1/64

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)