\(A=\frac{98}{99}\&B=\frac{98x99-1}{98x99}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

so sanh phan bu di roi se thay A>B(1 tru di tung phan so)

21 tháng 6 2016

Giãn ước phân số 99x98/98x99 ta có : 99/99 mà 99 - 1/99 = 98/99

Vậy : A = B

13 tháng 11 2017

\(D=\frac{3}{3x4}+\frac{3}{4x5}+.....+\frac{3}{99x100}.\)

\(D=3x\left(\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{98x99}+\frac{1}{99x100}\right)\)

\(D=3x\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}\right)\)

\(D=3x\left(\frac{1}{3}-\frac{1}{100}\right)\)

\(D=1-\frac{3}{100}\)

\(D=\frac{97}{100}\)

13 tháng 11 2017

\(D=\frac{3}{3x4}+\frac{3}{4x5}+.........+\frac{3}{98x99}+\frac{3}{99x100}\)

\(D=3x\left(\frac{1}{3x4}+\frac{1}{4x5}+...........+\frac{1}{98x99}+\frac{1}{99x100}\right)\)

\(D=3x\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\right)\)

\(D=3x\left(\frac{1}{3}-\frac{1}{100}\right)\)

\(D=\frac{3x97}{100}\)

\(D=\frac{291}{100}\)

27 tháng 4 2018

=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100

=1/1-1/100

=100/100-1/100

=99/100

27 tháng 4 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{99}{100}\)

~~~
#Sunrise

11 tháng 3 2016

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

11 tháng 3 2016

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2}-0+0+...+0-\frac{1}{100}\)

\(\Rightarrow\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)

5 tháng 5 2017

CÁCH 1

Ta có \(A=\frac{89}{99}=\frac{99-1}{99}=\frac{99}{99}-\frac{1}{99}=1-\frac{1}{99}\)

\(B=\frac{98.99+1}{98.99}=\frac{98.99}{98.99}+\frac{1}{98.99}\)

Vì \(\frac{1}{98.99}< \frac{1}{99}\Rightarrow1+\frac{1}{98.99}>1-\frac{1}{99}\Rightarrow\frac{98.99+1}{98.99}>\frac{98}{99}\Rightarrow B>A\)

CÁCH 2 

Ta thấy 98 < 99 nên \(\frac{98}{99}< 1\)hay \(A< 1\)

Ta thấy \(98.99+1>98.99\Rightarrow\frac{98.99}{98.99+1}>1\Rightarrow B>1\)

Vì A < 1 ; B > 1 nên A < B

5 tháng 5 2017

\(A=\frac{98}{99}< 1;\Rightarrow A< 1\)

\(B=\frac{98.99+1}{98.99}\)

Ta loại các số chia hết cho nhau thì được

\(B=\frac{1.1+1}{1.1}=1+1=2\)

\(2>1;\Rightarrow B>1;\Rightarrow B>A\)

24 tháng 7 2018

\(A=\frac{98}{99}=1-\frac{1}{99}< 1\)

\(B=\frac{98.99+1}{99.98}=\frac{98.99}{99.98}+\frac{1}{99.98}=1+\frac{1}{99.98}>1\)

Vậy  \(A< B\)

p/s: chúc bạn học tốt

Ta có : \(\frac{98.99+1}{99.98}>\frac{98.99}{99.98}=1\)

\(\frac{98}{99}< 1\)

\(=>\frac{98.99+1}{99.98}>\frac{98}{99}\)

10 tháng 9 2018

a) \(\frac{999}{10000}=\frac{99,9}{1000}>\frac{99}{100}\)

=> kết luận

b)  \(1-\frac{97}{99}=\frac{2}{99}>1-\frac{98}{100}=\frac{2}{100}\)

\(\Rightarrow\frac{97}{99}< \frac{98}{100}\)

=> kết luận

17 tháng 6 2017

a= 7

b= 0

19 tháng 6 2017

giải cách làm ra luôn

21 tháng 9 2020

em cần gấp ạ ;)))

21 tháng 9 2020

2)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{1.50}{100}-\frac{1}{100}=\frac{50-1}{100}=\frac{49}{100}\)