Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:1-2+3-4+...+2011-2012
=1+2+3+4+...+2011+2012-2(2+4+6+...+2012)
=2025078-2(1012036)
=2025078-2024072
=1006
Học giỏi!
a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)
Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)
Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)
=> 10A > 10B
=> A > B
b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\)
=> A < B
ta thấy B>1 nên B=\(\frac{20^{10}-1}{20^{10}-3}\)>\(\frac{20^{10}-1+2}{20^{100}-3+2}\)=\(\frac{20^{10}+1}{20^{10}-1}\)=A
vậy B>A
nếu ko hiểu thì tham khảo trong SBT lớp 6 bài so sánh PS ấy
Vì \(20^{10}-1>20^{10}-3\)
\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=A\)
vậy \(A< B\)
ta có :
A=\(\frac{20^{10}+1}{20^{10}-1}=1\frac{2}{20^{10}-1}\) (1)
B=\(\frac{20^{10}-1}{20^{10}-3}=1\frac{2}{20^{10}-3}\) (2)
từ (1) và (2) =>A>B (cùng tử ,phân số nào có mẫu lớn hơn)
vậy A > B
tk mik nha
B = 2010 - 1 / 2010 - 3 > 1
=> B > 2010 - 1 + 2 / 2010 - 3 + 2 = 2010 + 1 / 2010 - 1 = A
=> B > A
\(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-3}\)
\(A=\frac{20^{10}+1}{20^{10}-1}\)và \(B=\frac{20^{10}-1}{20^{10}-3}\)
Ta có \(B>1\Rightarrow N=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=A\)
\(\Rightarrow B>A\)
Vì \(20^{10}-1>20^{10}-3\)
\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-1+2}=\frac{20^{10}+1}{20^{10}-1}=A\)
\(\Rightarrow A< B\)
Ta có : \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)
\(A=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Do : \(20^{10}-1>20^{10}-3\)
\(\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
Vậy : \(A< B\)
a) Ta có: \(A=\frac{2^{2017}}{2^{2017}}+\frac{2^{2016}}{2^{2017}}+\frac{2^{2015}}{2^{2017}}+...+\frac{2^1}{2^{2017}}+\frac{1}{2^{2017}}\)
\(=\frac{1+2^1+2^2+...+2^{2016}+2^{2017}}{2^{2017}}\)
Đặt: B=\(1+2^1+2^2+...+2^{2017}\)
\(\Leftrightarrow2B=2^1+2^2+2^3+....+2^{2017}+2^{2018}\)
\(\Leftrightarrow2B-B=2^{2018}-1\)
\(\Leftrightarrow B=2^{2018}-1\)
\(\Rightarrow A=\frac{B}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)
Mik chỉ biết làm phần a thôi
b/ Sử dụng quy tắc: \(\frac{a+c}{b+c}< \frac{a}{b}\) với \(\left\{{}\begin{matrix}a;b;c>0\\a>b\end{matrix}\right.\)
\(B=\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}\)
\(\Rightarrow B>A\)
A-B= 20^10+1/20^10-1-20^10+1/20^10+3 =2/20^10+2>0
A-B>0 => A>B.
Có cách 2 nữa nhá:
A= (2010+1) / (2010-1) = 1 + (2/ (2010-1))>1
B= (2010-1)/ (2010-3) =1- (2/(2010-3))<1
Từ đó → A>B