Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/\(\frac{10^9+1}{10^{9+1}+1}\)=\(\frac{10^9+1}{10.10^9+1}\)=\(\frac{1}{10\text{}}\)
\(\frac{10^{10}+1}{10^{10+1}+1}\)=\(\frac{10^{10}+1}{10+10^{10}+1}\)=\(\frac{1}{10}\)
Vì \(\frac{1}{10}\)=\(\frac{1}{10}\)=>bằng nhau
\(\frac{-207}{809}\)> 1
\(\frac{175}{-526}\)< 1
=> \(\frac{-207}{809}\)> \(\frac{175}{-526}\)
Mik bt làm câu a thôi nha!
Câu b hoei khó
\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Vì \(1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\)
\(\Rightarrow A< B\)
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
\(\Rightarrow A< B\)
a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)< \(\frac{9^{19}+1+8}{9^{20}+1+8}\)= \(\frac{9^{19}+9}{9^{20}+9}\)= \(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)= \(\frac{9^{18}+1}{9^{19}+1}\)= A
Vậy A > B
b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)> \(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)= \(\frac{10^{2018}-10}{10^{2019}-10}\)= \(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)= \(\frac{10^{2017}-1}{10^{2018}-1}\)= A
Vậy A < B.
NHỚ K CHO MK VỚI NHÉ !!!!!!!!
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}\) theo công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{11}+10}{10^{12}+10}=\frac{10^{10}\left(10+1\right)}{10^{11}\left(10+1\right)}=\frac{10^{10}}{10^{11}}\)
\(\Rightarrow\frac{10^{10}}{10^{11}}=\frac{10^{10}\cdot10^{12}}{10^{11}\cdot10^{12}}=\frac{10^{22}}{10^{23}}\)
\(\Leftrightarrow A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}\)
Lại áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}< \frac{10^{11}+1}{10^{12}+1}=B\)
\(\Leftrightarrow A< B\)
Hoặc \(A< \frac{10^{11}-1+2}{10^{12}-1+2}=\frac{10^{12}+1}{10^{12}+1}\)
..... (EZ)
b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)
= \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)
= 1 + \(\frac{1999}{2000^{2016}+1}\)
2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)
= \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)
= 1 + \(\frac{1999}{2000^{2015}+1}\)
So sanh
câu b tiếp
So sánh 2000A với 2000B
Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)
→ 2000A< 2000B
→ A<B
10A=1011-10/1011-1
=1011-1-9/1011-1
=1 - 9/1011-1
10B=1010-10/1010-1
=1010-1-9/1010-1
=1 - 9/1010-1
Vì 9/1011-1<9/1010-1 nên 1 - 9/1011-1>1 - 9/1010-1
hay 10A>10B
=>A>B(vì 10>0)
\(A=\frac{10^{10}-1}{10^{11}-1}\)
Nhân cả hai vế của A với 10 ta có
\(10A=\frac{10\times\left(10^{10}-1\right)}{10^{11}-1}\)
\(10A=\frac{10^{11}-10}{10^{11}-1}\)
\(10A=\frac{10^{11}-1+9}{10^{11}-1}\)
\(10A=\frac{10^{11}-1}{10^{11}-1}+\frac{9}{10^{11}-1}=1+\frac{9}{10^{11}-1}\left(1\right)\)
\(B=\frac{10^9-1}{10^{10}-1}\)
Nhân cả hai vế của B với 10 ta có
\(10B=\frac{10\times\left(10^9-1\right)}{10^{10}-1}\)
\(10B=\frac{10^{10}-10}{10^{10}-1}\)
\(10B=\frac{10^{10}-1+9}{10^{10}-1}\)
\(10B=\frac{10^{10}-1}{10^{10}-1}+\frac{9}{10^{10}-1}=1+\frac{9}{10^{10}-1}\left(2\right)\)
\(Từ\left(1\right)và\left(2\right)\Rightarrow1+\frac{9}{10^{11}-1}< 1+\frac{9}{10^{10}-1}\)
\(\Rightarrow10A< 10B\)
Vậy A < B