Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
a, ta có:x-y=a/b - c/d
=> x - y = ad-bc/ bd=1/bd mà b,d,n>0=>bd>0=> 1/bd>0
=>x >y(1)
ta lại có y-z =cn-dm/dn=1/dn
mà b,d,n=> dn>0=> 1/dn >0
=>y>z(2)
từ (1) ,(2) =>x>y>z
còn ý b các bạn tự suy nghĩ nhé
chúc các bạn học giỏi
Vì b,d,n > 0 nên Ta có:
ad - bc = 1 \(\Rightarrow\) ad > bc \(\Rightarrow\) \(\frac{a}{b}>\frac{c}{d}\) (1)
cn - dm = 1 \(\Rightarrow\) cn > dm \(\Rightarrow\) \(\frac{c}{d}>\frac{m}{n}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}>\frac{c}{d}>\frac{m}{n}\).
Vậy x > y > z
Theo mình câu đầu tiên của đề bài đầy đủ là : Cho \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{m}{n}\).
Và dòng thứ hai phải là "b, d, n > 0"
Và dòng cuối là : t = a + m/b + n
a) Ta có : \(x-y=\frac{a}{b}-\frac{c}{d}\)
\(=>x-y=\frac{ad-bc}{bd}=\frac{1}{bd}\)
mà b, d, n > 0 => bd > 0 => \(\frac{1}{bd}>0\)
\(=>x>y\left(1\right)\)
Ta lại có : \(y-z=\frac{c}{d}-\frac{m}{n}\)
\(=>y-z=\frac{cn-dm}{dn}=\frac{1}{dn}\)
mà b, d, n => dn > 0 => \(\frac{1}{dn}>0\)
\(=>y>z\left(2\right)\)
Từ (1)(2) => x > y > z
b) Ta có : \(y-t=\frac{c}{d}-\frac{a+m}{b+m}\)
\(=>y-t=\frac{c\left(b+n\right)-d\left(a+m\right)}{d\left(b+n\right)}=\frac{cb+cn-da-dm}{d\left(b+n\right)}\)
\(=>y-t=\frac{bc-ad+cn-dm}{d\left(b+n\right)}=\frac{-ad+bc+1}{d\left(b+n\right)}=\frac{-\left(ad-bc\right)+1}{d\left(b+n\right)}\)
\(=>y-t=\frac{-1+1}{d\left(b+n\right)}=\frac{0}{d\left(b+n\right)}\)
mà b + n khác 0 => d(b + n) khác 0
\(=>y-t=0\)
\(=>y=t\)
giải: với a>b => \(\frac{a}{b}>1\) => (a+m)b = ab + bm > ab + am = a(b+m) => a+m/b+m > \(\frac{a}{b}\)
với a<b tương tự ta cũng suy ra a+m/b+m < \(\frac{a}{b}\)
với a = b => a+m/b+m = \(\frac{a}{b}\)
à mjk lm lộn cho mjk xin lỗi nha ^^