K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)

\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)

\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)

\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)

\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)

\(B=\frac{8}{303}\)

\(A.B=\frac{8}{303}.\frac{3}{200}\)

\(A.B=\frac{1}{2525}\)

b, A = 1/2 x 3/100

B = 2/3 x 4/101

Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2

MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)

Ta có : 1 - 3/100 = 97/100

1 - 4/101 = 97/101

Mà 97/101 < 97/100 => 4/101 > 3/100 (2)

Từ (1) và (2) => B > A

9 tháng 7 2017

a,

\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)

\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)

b,

1/2 < 2/3

3/4 < 4/5

.............

99/100 < 100/101

=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)

4 tháng 10 2021

yutyugubhujyikiu

1 tháng 4 2016

A=(  4^5/4+4^5/4^2+4^5/4^3+4^5/4^4  )+.....................+ (  4^101/4^97+....+4^101/4^100  ) 

A = ( 4^4+ 4^3+4^2+4 ) + .........................................+ ( 4^4 + 4^3+4^2+4)

A= ( 4^4 + 4^ 3+ 4^2+4 ) * ( (101-5):4+1)

A = (4^4+4^3+4^2+4) * 25

A =( 256+81+16+4)*25= 8925

        k cho mình nhé 

1 tháng 4 2019

A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102

=1+0+0+....+102=103

b) |1-2x|>7

=> 1-2x>7 hoặc 1-2x<-7

=> 2x<-6 hoặc 2x>8

=> x<-3 hoặc x>4

29 tháng 12 2016

\(B=\frac{3^n+1}{3^n}=1+\frac{1}{3^n}=C+D\) 

B có 98 số hạng => C=98

\(D=\frac{1}{3}+\frac{..1}{3^{97}}+\frac{1}{3^{98}}\) 

3.D=1+1/3+....+1/3^97

tRỪ CHO NHAU

2D=1-1/3^98

\(C=\frac{1}{2}-\frac{1}{2.3^{98}}< \frac{1}{2}\)

\(B=98+\frac{1}{2}-\frac{1}{2.3^{98}}< 99< 100\) có lẽ đề lấy 100 co chẵn. hay cộng nhầm ai tets hộ cái

28 tháng 9 2017

a) \(\dfrac{x+5}{5}+\dfrac{x+5}{7}+\dfrac{x+5}{9}=\dfrac{x+5}{11}+\dfrac{x+5}{13}\)

\(\Rightarrow\left(x+5\right)\left(\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}\right)=\left(x+5\right)\left(\dfrac{1}{11}+\dfrac{1}{13}\right)\)

\(\Rightarrow\dfrac{143}{315}\left(x+5\right)=\dfrac{24}{143}\left(x+5\right)\)

\(\Rightarrow\dfrac{143}{315}\left(x+5\right)-\dfrac{24}{143}\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(\dfrac{143}{315}-\dfrac{24}{143}\right)=0\)

\(\Rightarrow x+5=0\Rightarrow x=-5\)

b) \(\dfrac{x+2}{100}+\dfrac{x+3}{99}+\dfrac{x+4}{98}=\dfrac{x+5}{97}+\dfrac{x+6}{96}+\dfrac{x+7}{95}\)

\(\Rightarrow\)\(3+\dfrac{x+2}{100}+\dfrac{x+3}{99}+\dfrac{x+4}{98}=3+\dfrac{x+5}{97}+\dfrac{x+6}{96}+\dfrac{x+7}{95}\)

\(\Rightarrow\)\(1+\dfrac{x+2}{100}+1+\dfrac{x+3}{99}+1+\dfrac{x+4}{98}=1+\dfrac{x+5}{97}+1+\dfrac{x+6}{96}+1+\dfrac{x+7}{95}\)

\(\Rightarrow\)\(\dfrac{100}{100}+\dfrac{x+2}{100}+\dfrac{99}{99}+\dfrac{x+3}{99}+\dfrac{98}{98}+\dfrac{x+4}{98}=\dfrac{97}{97}+\dfrac{x+5}{97}+\dfrac{96}{96}+\dfrac{x+6}{96}+\dfrac{95}{95}+\dfrac{x+7}{95}\)\(\Rightarrow\)\(\dfrac{x+102}{100}+\dfrac{x+102}{99}+\dfrac{x+102}{98}=\dfrac{x+102}{97}+\dfrac{x+102}{96}+\dfrac{x+102}{95}\)

\(\Rightarrow\)\(\left(x+102\right)\left(\dfrac{1}{100}+\dfrac{1}{99}+\dfrac{1}{98}\right)=\left(x+102\right)\left(\dfrac{1}{97}+\dfrac{1}{96}+\dfrac{1}{95}\right)\)

\(\Rightarrow\)\(x+102=0\)

\(\Rightarrow x=-102\)

28 tháng 9 2017

c) \(\left(x+2\right)-\left(x+3\right)>0\)

\(\Rightarrow x+2-x-3>0\Rightarrow-1>0\)

\(\Rightarrow x\in\varnothing\)

d) \(\left(x-5\right)\left(x+\dfrac{7}{3}\right)\ge0\)

TH1: \(\left\{{}\begin{matrix}x-5\ge0\\x+\dfrac{7}{3}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge5\\x\ge\dfrac{-7}{3}\end{matrix}\right.\)

\(\Rightarrow x\ge\dfrac{-7}{3}\)

TH2: \(\left\{{}\begin{matrix}x-5\le0\\x+\dfrac{7}{3}\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le5\\x\le\dfrac{-7}{3}\end{matrix}\right.\)

\(\Rightarrow x\le5\)

TH3: \(\left[{}\begin{matrix}x-5=0\\x+\dfrac{7}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)

28 tháng 9 2017

a) Ta có : \(\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}=\frac{x+5}{11}+\frac{x+5}{13}\)

\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\left(\frac{x+5}{11}+\frac{x+5}{13}\right)=0\)

\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\frac{x+5}{11}-\frac{x+5}{13}=0\)

\(\Rightarrow\left(x+5\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\right)=0\)

Do \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\ne0\)

\(\Rightarrow x+5=0\Rightarrow x=-5\)

Vậy x = -5

b) Ta có : \(\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}\)

\(\Rightarrow\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}+3=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}+3\)

\(\Rightarrow\frac{x+2}{100}+1+\frac{x+3}{99}+1+\frac{x+4}{98}+1=\frac{x+5}{97}+1+\frac{x+6}{96}+1+\frac{x+7}{95}+1\)

\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}=\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\)

\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\left(\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\right)=0\)

\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\frac{x+102}{97}-\frac{x+102}{96}-\frac{x+102}{95}\)

\(\Rightarrow\left(x+102\right)\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)

Do \(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)

\(\Rightarrow x+102=0\Rightarrow x=-102\)

Vậy x = -102

c) Ta có : (x + 2) - (x + 3) = x + 2 - x - 3

                                      = x - x + 2 - 3

                                      = -1

mà (x + 2) - (x + 3) > 0 => không tồn tại x sao cho (x + 2) - (x + 3) > 0

d) Ta có : \(\left(x-5\right)\left(x+\frac{7}{3}\right)\ge0\)

\(\Rightarrow\orbr{\begin{cases}x\ge5\\x\ge\frac{-7}{3}\end{cases}}\)

\(\Rightarrow x\ge\frac{-7}{3}\)

Vậy \(x\ge\frac{-7}{3}\)