Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2^{700}=\left(2^7\right)^{100}=128^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Có \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)
\(b,S=1+2+2^2+...+2^{50}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2S-S=S=2^{51}-1< 2^{51}\)
a) Ta có :
\(2^{700}=\left(2^7\right)^{100}=128^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Vì \(128^{100}>125^{100}\)\(\Rightarrow\)\(2^{700}>5^{300}\)
Vậy \(2^{700}>5^{300}\)
b) \(S=1+2+2^2+...+2^{50}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
\(\Rightarrow S=2^{51}-1< 2^{51}\)
Vậy S < 251
_Chúc bạn học tốt_
Ta có: 3500=(35)100=243100
2700=(27)100=128100
Vì 243>128 nên: 243100>128100
hay 3500>2700
Ta có : 2700 = (27)100 = 128100
5300 = (53)100 = 125100
Vì : 128100 > 125100
Nên : 2700 > 5300
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
vi \(8^{100}< 9^{100}\)nen \(2^{300}< 3^{200}\)
a) tia nằm giữa hai tia còn lại là : tia Ox
b) yOx lớn hơn xOy
c) có
ý c mik ko biết có đúng ko hii
1)Ta có:
\(111...11222...22\left(100 cs 1 v\text{à} 2\right)=10^{100}.111...111\left(100 cs 1\right)+222...22\left(100 cs 2\right)\)
\(=10^{100}.\frac{10^{100}-1}{9}+2.\frac{10^{100}-1}{9}=\frac{10^{100}\left(10^{100}-1\right)+2\left(10^{100}-1\right)}{9}=\frac{\left(10^{100}+2\right)\left(10^{100}-1\right)}{9}=\frac{10^{100}+2}{3}.\frac{10^{100}-1}{3}\)
\(M\text{à} \frac{10^{100}+2}{3}\ne\frac{10^{100}-1}{3} \)
\(\Rightarrow111...11222..2\left(100 cs 1 v\text{à} 2\right) \) không phải là tích 2 số tự nhiên
2) Để dacb chia hết cho 4 thì cb chia hết cho 4
Ta có :
cb=10c+b=8c+2c+b
Mà 8c chia hết cho 4 nên
2c+b cũng phải chia hết cho 4(đpcm)
điền dấu > nha
k mik
đúng
Ta có :
a6b + 5c0 + d141
= 100a + 60 + b + 500 + 10c + 1000d + 141
= ( 1000d + 100a + 10c + b ) + ( 60 + 500 + 141 )
= dacb + 701 > dacb + 700