\(a,2^{30}+3^{30}+4^{30}v\text{à}3^{20}+6^{20}+8^{20}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)

\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)

\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)

\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)

Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)

28 tháng 6 2019

a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)

Mà \(8^{10}< 9^{10}\)\(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên

\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

\(\text{a, }2^{30}=8^{10}\)

     \(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)

\(\text{Vậy }2^{30}< 3^{20}\)

\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)

     \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(\text{Vậy }5^{300}< 243^{100}\)

21 tháng 1 2016

230+330+430>3.2410

24 tháng 2 2020

a) Ta có \(\hept{\begin{cases}2^{24}=\left(2^6\right)^4=64^4\\3^{16}=\left(3^4\right)^4=81^4\end{cases}}\)

Mà \(64< 81\)

\(\Rightarrow64^4< 81^4\)

\(\Rightarrow2^{24}< 3^{16}\)

b) Ta có \(\hept{\begin{cases}2^{300}=\left(2^3\right)^{100}=8^{100}\\3^{200}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)

Mà 8 < 9  

\(\Rightarrow8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

c) Ta có \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta có 71 < 2401 

\(\Rightarrow71^5< 2401^5\)

\(\Rightarrow71^5< 7^{20}\)

!! K chắc câu c

@@ Học tốt

Chiyuki Fujito

24 tháng 2 2020

a) \(2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8\)

Ta thấy 8<9\(\Rightarrow8^8< 9^8\Rightarrow2^{24}< 3^{16}\)

b) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Thấy \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

c) \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta thấy \(71< 2401\Rightarrow71^5< 2401^5\Rightarrow71^5< 7^{20}\)

1 tháng 10 2018

1) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)

2) \(3^{21}=3^{20}\cdot3=9^{10}\cdot3\)

\(2^{31}=2^{30}\cdot2=8^{10}\cdot2\)

mà \(9^{10}\cdot3>8^{10}\cdot2\)=> tự viết tiếp

3) đợi chút

1 tháng 10 2018

430 = (43)10 = 6410 > 4810 = ( 2 . 24 )10 = ( 210 ) . ( 2410 ) > 3 . 2410
 => 230 + 330 + 430 > 3 . 2410

.

31 tháng 7 2017

\(VT=2^{30}+3^{20}+4^{30}\)

\(=\left(2^3\right)^{10}+\left(3^2\right)^{10}+\left(4^3\right)^{10}\)

\(=8^{10}+9^{10}+64^{10}\)

\(VP=3^{20}+6^{20}+8^{20}\)

\(=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(2^3\right)^{20}\)

\(=9^{10}+36^{10}+8^{20}\)

\(=9^{10}+36^{10}+\left(8^2\right)^{10}\)

\(=9^{10}+36^{10}+64^{10}\)

\(\left\{{}\begin{matrix}9^{10}=9^{10}\\64^{10}=64^{10}\\36^{10}>9^{10}\end{matrix}\right.\)

\(\Rightarrow VT< VP\)

22 tháng 8 2017

Đặt \(\frac{x_1-1}{5}=\frac{x_2-2}{4}=\frac{x_3-3}{3}=\frac{x_4-4}{2}=\frac{x_5-5}{1}=k\)

Áp dụng TC DTSBN ta có :

\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)

\(=\frac{x_1+x_2+x_3+x_4+x_5-15}{15}=\frac{30-15}{15}=1\)

\(\frac{x_1-1}{5}=1\Rightarrow x_1=6;\frac{x_2-2}{4}=1\Rightarrow x_2=6;\frac{x_3-3}{3}=1\Rightarrow x_3=6;\frac{x_4-4}{2}=1\Rightarrow x_4=6;\frac{x^5-5}{2}=1\Rightarrow x_5=6\)

Vậy \(x_1=x_2=x_3=x_4=x_5=6\)

21 tháng 6 2018

\(2^{27}=2^{3.9}=8^9\)

\(3^{18}=3^{2.9}=9^9\)

Vì \(9^9>8^9\Rightarrow3^{18}>2^{27}\)

21 tháng 6 2018

MK chỉ làm đc câu a) thui nha :

2^27 = 2^ 3.9 = 8^9

3^18 = 3^2.9=9^9

Vì 9^9 > 8^9 => 2^27 < 2 ^18 

11 tháng 10 2020

Violympic toán 7

11 tháng 10 2020

a) Ta có: \(2^{300}=\left(2^3\right)^{100}\)

\(=8^{100}\)

Ta có: \(3^{200}=\left(3^2\right)^{100}\)

\(=9^{100}\)

Ta có: \(8^{100}< 9^{100}\)

nên \(2^{300}< 3^{200}\)

b) Ta có: \(4^{30}=2^{30}\cdot2^{30}\)

\(=2^{30}\cdot\left(2^2\right)^{15}\)

\(=2^{30}\cdot4^{15}\)

Ta có: \(3\cdot24^{10}=3\cdot3^{10}\cdot8^{10}\)

\(=3^{11}\cdot8^{10}\)

\(=3^{11}\cdot2^{30}\)

Ta có: \(4^{15}>3^{15}\)

\(3^{15}>3^{11}\)

nên \(4^{15}>3^{11}\)

\(4^{30}>4^{15}\)

nên \(4^{30}>3^{11}\)

\(\Leftrightarrow2^{30}+3^{30}+4^{30}>3^{11}+3^{30}+2^{30}\)

hay \(2^{30}+3^{30}+4^{30}>3\cdot24^{10}\)