K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

a) Gọi dãy đó là A, ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\) 

\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\) 

\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\) 

\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\) 

Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\) 

\(\Rightarrow A< 1\) 

b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

Ta có:

\(A=\dfrac{10^{11}-1}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-10}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\) 

\(10A=1+\dfrac{9}{10^{12}-1}\) 

Tương tự:

\(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+10}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\) 

\(10B=1+\dfrac{9}{10^{11}+1}\) 

Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\) 

\(\Rightarrow A< B\)

27 tháng 1 2023

\(A=\dfrac{10^{12}+6}{10^{12}-11}\)

\(\Rightarrow A=\dfrac{10^{12}-11+17}{10^{12}-11}\)

\(\Rightarrow A=\dfrac{10^{12}-11}{10^{12}-11}+\dfrac{17}{10^{12}-11}\)

\(\Rightarrow A=1-\dfrac{17}{10^{12}-11}\)

\(B=\dfrac{10^{11}+5}{10^{11}-12}\)

\(\Rightarrow B=\dfrac{10^{11}-12+17}{10^{11}-12}\)

\(\Rightarrow B=\dfrac{10^{11}-12}{10^{11}-12}+\dfrac{17}{10^{11}-12}\)

\(\Rightarrow B=1-\dfrac{17}{10^{11}-12}\)

Vậy ta cần so sánh \(1-\dfrac{17}{10^{12}-11}\) và \(1-\dfrac{17}{10^{11}-12}\) 

Ta thấy \(\left(10^{12}-11\right)>\left(10^{11}-12\right)\) và 2 phân số trên cùng tử số 17 nên \(\dfrac{17}{10^{12}-11}< \dfrac{17}{10^{11}-12}\)

Vậy \(1-\dfrac{17}{10^{12}-11}>1-\dfrac{17}{10^{11}-12}\) hay \(A>B\)

28 tháng 1 2023

Cảm ơn bạn nhé!

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

6 tháng 1 2016

 B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A

6 tháng 1 2016

 A=10^11-1/10^12-1 < B=10^10+1/10^11=1.

9 tháng 2 2023

\(A=\dfrac{10^{11}+1}{10^{12}-1}\)

\(\Rightarrow10A=\dfrac{10^{11}+1}{10^{12}-1}.10\)

\(\Rightarrow10A=\dfrac{10\left(10^{11}+1\right)}{10^{12}-1}\)

\(\Rightarrow10A=\dfrac{10^{12}-10}{10^{12}-1}\)

\(B=\dfrac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow10B=\dfrac{10^{10}+1}{10^{11}+1}.10\)

\(\Rightarrow10B=\dfrac{\left(10^{10}+1\right).10}{10^{11}+1}\)

\(\Rightarrow10B=\dfrac{10^{11}+10}{10^{11}+1}\)

Ta thấy:

 \(10^{12}-1>10^{12}-10>0\Rightarrow10A< 1\)

\(0< 10^{11}+1< 10^{11}+10\Rightarrow10B>1\)

Mà \(10A< 1;10B>1\)

\(\Rightarrow B>A\).

28 tháng 4 2017

vi ve A va ve B deu co (-12)/10^2017 nen ta chi viec so sanh (-21)/10^2017 voi (-12)/10^2017.Ma (-21)/10^2017<(-12)/10^2016 nen A < B

14 tháng 2 2016

bai toan nay kho

11 tháng 3 2016

=935 nhe bé