Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik cũng gặp bài giống y như bạn nhưng ko giải đc đây. Bạn nào biết vào giúp chúng mình đi.
A=\(\frac{100^{100}+1}{100^{99}+1}< \frac{\left(100^{100}+1\right)+99}{\left(100^{90}+1\right)+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}\)
Vì \(\frac{100^{99}+1}{100^{89}+1}=\frac{100^{99}+1}{100^{89}+1}\)
Nên A=B
\(\frac{2018^{100}+1}{2018^{90}+1}\)= \(\frac{2018^{10}+1}{1+1}\)\(\frac{2018^{10}+1}{2}\)
\(\frac{2018^{99}+1}{2018^{89}+1}\)= \(\frac{2018^{10}+1}{1+1}\)= \(\frac{2018^{10}+1}{2}\)
=> \(\frac{2018^{100}+1}{2018^{90}+1}=\frac{2018^{99}+1}{2018^{89}+1}\)
nhớ bảo kê nha Duyên
Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(C=\frac{100^{100}+1}{100^{90}+1}< \frac{100^{100}+1+99}{100^{90}+1+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}=D\)
Vậy \(C< D\)
àk bạn ơi mk nhầm :
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
Áp dụng công thức thứ hai ta có :
\(C=\frac{100^{100}+1}{100^{90}+1}>\frac{100^{100}+1+99}{100^{90}+1+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}=D\)
Vậy \(C>D\) ( vầy mới đúng )