Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^8+2}{10^8-1}=\frac{\left(10^8-1\right)+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{\left(10^8-3\right)+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(1+\frac{3}{10^8-1}<1+\frac{3}{10^8-3}\) nên A < B
Ta có :
A = 108 + 2 / 10 8 - 1 = 1 + 3 / 10 8 - 1
B = 108 / 10 8 - 3 = 1 + 3 / 108 - 3
Vì 3/ 108 - 1 < 3 / 108 - 3=> A < B
B=\(\frac{2011^{10}-1}{2011^{10}-3}\) <1 => \(\frac{2011^{10}-1}{2011^{10}-3}\) < \(\frac{2011^{10}-1+2}{2011^{10}-3+2}\) = \(\frac{2011^{10}+1}{2011^{10}-1}\) = A
=> B<A
a) Ta có: \(\frac{-9}{80}=\frac{\left(-9\right)x4}{80x4}=\frac{-36}{320}\) và \(\frac{17}{320}\)
b) Ta có: \(\frac{-7}{10}=\frac{\left(-7\right)x33}{10x33}=\frac{-231}{330}\) và \(\frac{1}{33}=\frac{1x10}{33x10}=\frac{10}{330}\)
c) Ta có:
\(\frac{-5}{14}=\frac{\left(-5\right)x10}{14x10}=\frac{-50}{140}\)
\(\frac{3}{20}=\frac{3x7}{20x7}=\frac{21}{140}\)
\(\frac{9}{70}=\frac{9x2}{70x2}=\frac{18}{140}\)
d) Ta có:
\(\frac{10}{42}=\frac{10x22}{42x22}=\frac{220}{924}\)
\(\frac{-3}{28}=\frac{\left(-3\right)x33}{28x33}=\frac{-99}{924}\)
\(\frac{-55}{132}=\frac{\left(-55\right)x7}{132x7}=\frac{-385}{924}\)
a: \(B=\left(-\dfrac{1}{5}-\dfrac{5}{7}+\dfrac{-3}{35}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{2}\right)+\dfrac{1}{41}\)
\(=\dfrac{-7-25-3}{35}+\dfrac{3+2+1}{6}+\dfrac{1}{41}=\dfrac{42}{41}-1=\dfrac{1}{41}\)
a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm
b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)
= \(\frac{1}{2}\) + \(\frac{1}{9}\)= \(\frac{11}{18}\)
M=1+1/2^2+1/3^2+1/4^2+...+1/10^2>1+1/2*3+1/3*4+1/4^5+...+1/10*11
M>1+1/2-1/3+1/4-1/4+1/5-...-1/11
M>1+1/2-1/11
M>1+9/22
M>31/22
vì 31/22>4/3 nên M>4/3
Câu 1 :\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{100}=\frac{1}{100}\)
a) ta có:
\(\frac{-1}{2}-1\le x\le\frac{1}{2}.3\)
hay \(-1,5\le x\le1,5\)
vì x\(\in Z\) nên ta chọn x=-1,0,1
ta có:
3S=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
3S-S=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)
2S=1-\(\frac{1}{3^9}\)
s=\(\left(1-\frac{1}{3^9}\right):2\)
ta có
A/B=3^10+1/3^9+1 : 3^9+1/3^8+1
A/B=3^10+1/3^9+1 . 3^8+1/+3^9+1
A/B=(3^10+1).(3^8+1)/(3^9+1).(3^9+1)
A/B=3^18+3^10+3^8+1/3^18+3^9+3^9+1
Ta so sánh 3^10+3^8 và 3^9+3^9
3^8.(3^2+1) và 3^8.(3+3)
3^8.10 và 3^8.6
vì 3^8.10 > 3^8.6
nên A>B