\(A=3^0+3^1+3^2+........+3^{2016}\)  và \(B=3^{2017...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(A=1+3+3^2+3^3+...+3^{2016}\)

\(A=1+3\left(1+3^2+...+3^{2015}\right)\)

\(A=1+3\left(A-3^{2016}\right)\)

\(A=1+3A-3^{2017}\)

\(2A=3^{2017}-1\Rightarrow A=\frac{3^{2017}-1}{2}\)

\(A< B\)

14 tháng 8 2017

a, \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2012\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)

b, \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}=\frac{1}{2017}\)

4 tháng 8 2017

a) \(A=4+4^2+4^3+...+4^{200}\)

\(4A=4^2+4^3+...+4^{201}\)

\(4A-A=3A=4^{201}-4\)

\(A=\frac{4^{201}-4}{3}\)

b) \(B=1+5+5^2+...+5^{2017}\)

\(5B=5+5^2+5^3+...+5^{2018}\)

\(5B-B=4B=5^{2018}-1\)

\(B=\frac{5^{2018}-1}{4}\)

c) \(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{500}}\)

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{499}}\)

\(3C-C=2C=1-\frac{1}{3^{500}}=\frac{3^{500}-1}{3^{500}}\)

\(C=\frac{\left(\frac{3^{500}-1}{3^{500}}\right)}{2}\)

T_i_c_k cho mình nha,có j ko hiểu cứ hỏi mình nhé ^^

3 tháng 6 2018

Ta có 200920= 20092x10=(20092)10= 403608110 

Vì 4036081<20092009
Nên 403608110<2009200910

Vậy...
Rồi đó nha 
~ủng hộ dùm~

3 tháng 6 2018

Hì hì mik biết có câu 1 thui

2 tháng 8 2016

a)\(\frac{1}{4}-\frac{1}{3}x=\frac{2}{5}-\frac{3}{2}x\)

\(\Leftrightarrow\)\(\frac{15-20x}{60}=\frac{24-90x}{60}\)

\(\Leftrightarrow15-20x=24-90x\)

\(\Leftrightarrow-20x+90x=24-15\)

\(\Leftrightarrow70x=9\)

\(\Leftrightarrow x=\frac{9}{70}\)

 

c) (1/2-1/6)*3^x+4-4*3^x=3^16-4*3^13

=1/3*3^x*3^4-4*3^x=3^13*3^3-4*3^13

=27*3^x-4*3^x=3^13*(27-4)

=3^x*(27-4)=3^13*(27-4)

=>x=13

12 tháng 7 2017

giúp mình bài này với

so sánh bằng cách nhanh nhất

a 2013 phần 2012 và 13 phần 12

b 15 phần 46 và 21 phần 62

19 tháng 9 2019

Ta có: \(B=\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}\)

\(B=1+\left(\frac{1}{2016}+1\right)+\left(\frac{2}{2015}+1\right)+\left(\frac{3}{2014}+1\right)+...+\left(\frac{2015}{2}+1\right)\)

\(B=\frac{2017}{2017}+\frac{2017}{2016}+\frac{2017}{2015}+\frac{2017}{2014}+...+\frac{2017}{2}\)

\(B=2017.\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{2017.\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{2}\right)}\)

\(\Rightarrow\frac{A}{B}=\frac{1}{2017}.\)

Chúc bạn học tốt!

15 tháng 12 2019

Này Vũ Minh Tuấn, mk cũng có 1 bài cũng gần giống như thế này nhưng khác 1 tí cậu giải giúp mk vs