Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(7^{30}=\left(7^3\right)^{10}=343^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
mà \(343^{10}>81^{10}\)
=>\(7^{30}>3^{40}\)
b) 202^303 và 303^202
\(202^{303}=\left(202^3\right)^{100}=8242408^{100}\)
\(302^{202}=\left(302^2\right)^{100}=91204^{100}\)
\(8242408^{100}>91204^{100}
\)
202^303 > 303^202
b: 99^20=(99^2)^10=9801^10
=>99^20<9999^10
d: 10^10=100^5=4*50^5<48*50^5
e: 1990^10+1990^9
=1990^9(1990+1)
=1990^9*1991
1991^10=1991^9*1991
=>1991^10>1990^9*1991
=>1991^10>1990^10+1990^9
\(a,\)Ta có :
\(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^{27}\)
Vì \(3^{10}>3^9\Rightarrow9^5>27^3\)
Ta có : 3500 = (35)100 = 243100
7300 = (73)100 = 343100
Vì 243 < 343
Nên : 243100 < 343100
Hay : 3500 < 7300
2711 và 818
Ta có :
2711 = ( 33 )11 = 333
818 = ( 34 )8 = 332
Vì 333 > 332 Nên 2711 > 818
\(a.3^{500}=\left(3^5\right)^{100}=125^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
\(V\text{ì}\)\(125^{100}< 343^{100}=>3^{500}< 7^{300}\)
\(99^{20}=\left(9^2\right)^{10}=81^{10}\)
Vì 8110 < 999910 => 9920 < 999910
a) Ta có:
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Mà: \(8< 9\)
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) Ta có:
\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)
Mà: \(243< 343\)
\(\Rightarrow243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
c) Ta có:
\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)
Mà: \(2< 3\)
\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)
\(\Rightarrow8^5< 3\cdot4^7\)
d) Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)
Mà: \(8242408>91809\)
\(\Rightarrow8242408^{101}>91809^{101}\)
\(\Rightarrow202^{303}>303^{202}\)