Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)
\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)
\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)
\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)
\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)
\(10A=1+\frac{9}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\)
\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}\)
\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)
\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)
\(10B=1+\frac{9}{10^{17}+1}\)
\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)
xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)
b
\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)
\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)
Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B
Mình biết làm nhưng bạn nên viết rời ra.Viết liền làm người khác không muốn làm đó.
Làm thì dài quá nên mình gợi ý thôi nhé
a)quy đồng
b)Sử dụng phần bù
c)(1/80)^7>(1/81)^7=(1/3^4)^7=1/3^28
(1/243)^6=(1/3^5)^6=1/3^30
Vì 1/3^28>1/3^30 nên ......
d)Tương tự câu d
Mấy câu còn lại thì nhắn tin với mình,mình sẽ trả lời cho,mình đang mệt lắm rồi nha!!!
b) Áp dụng tính chất
\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Ta có: \(B=\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10.\left(10^{15}+1\right)}{10.\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)
\(\Rightarrow B< A\)
\(B< 1\Rightarrow\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)
\(\Rightarrow A>B\)
a) Ta có: \(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
\(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\Rightarrow1+\frac{9}{10^{16}+1}>1+\frac{9}{10^{17}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
Vậy A > B
b) Ta có: \(\frac{1}{10}C=\frac{10^{1992}+1}{10^{1992}+10}=1+\frac{10^{1992}+1}{9}\)
\(\frac{1}{10}D=\frac{10^{1993}+1}{10^{1993}+10}=1+\frac{10^{1993}+1}{9}\)
\(\frac{10^{1992}+1}{9}< \frac{10^{1993}+1}{9}\Rightarrow1+\frac{10^{1992}+1}{9}< 1+\frac{10^{1993}+1}{9}\)
\(\Rightarrow\frac{1}{10}C< \frac{1}{10}D\)
\(\Rightarrow C< D\)
Vậy C < D
Minh chi biet lam cau b thoi ak
b) Giai:
B=10^16+1 tren 10^17 +1 <10^16+1+9 tren 10^17+1+9
ma 10^16+1+9 tren 10^17+1+9 = 10^16+10 tren 10^17+10
=10(10^15+1) tren 10(10^16+1)
=10^15+1 tren 10^16+1 =A
=>A>B
Cho y kien voi!
Ta có: \(\dfrac{7}{15}+\dfrac{9}{10}+\dfrac{8}{15}+\dfrac{1}{10}+\dfrac{-20}{10}+\dfrac{1}{157}\)
\(=\left(\dfrac{7}{15}+\dfrac{8}{15}\right)+\left(\dfrac{9}{10}+\dfrac{1}{10}+\dfrac{-20}{10}\right)+\dfrac{1}{157}\)
\(=1+\left(-1\right)+\dfrac{1}{157}\)
\(=0+\dfrac{1}{157}=\dfrac{1}{157}.\)
Ta có: \(\dfrac{7}{15}+\dfrac{9}{10}+\dfrac{8}{15}+\dfrac{1}{10}+\dfrac{-20}{10}+\dfrac{1}{157}\)
= \(\left(\dfrac{7}{15}+\dfrac{8}{15}\right)+\left(\dfrac{9}{10}+\dfrac{1}{10}+\dfrac{-20}{10}\right)+\dfrac{1}{157}\)
= \(\dfrac{7+8}{15}+\dfrac{10-20}{10}+\dfrac{1}{157}\)
= 1-1+\(\dfrac{1}{157}\)= 0 + \(\dfrac{1}{157}\) = \(\dfrac{1}{157}\)
a, \(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\Rightarrow A< B\)
b, \(A=\frac{10^{15}+1}{10^{16}+1}\Rightarrow10A=\frac{10\left(10^{15}+1\right)}{10^{16}+1}=\frac{10^{16}+10}{10^{16}+1}=\frac{10^{16}+1+9}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\Rightarrow10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}=\frac{10^{17}+10}{10^{17}+1}=\frac{10^{17}+1+9}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\Rightarrow1+\frac{9}{10^{16}+1}>1+\frac{9}{10^{17}+1}\Rightarrow10A>10B0\Rightarrow A>B\)
c, giống câu b
d, giống câu b
e, \(A=\frac{10^{15}+5}{10^{15}-7}=\frac{10^{15}-7+12}{10^{15}-7}=1+\frac{12}{10^{15}-7}\)
\(B=\frac{10^{16}+7}{10^{16}-5}=\frac{10^{16}-5+12}{10^6-5}=1+\frac{12}{10^6-5}\)
Vì \(\frac{12}{10^{15}-7}>\frac{12}{10^{16}-5}\Rightarrow1+\frac{12}{10^{15}-7}>1+\frac{12}{10^{16}-7}\Rightarrow A>B\)
f, \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\Rightarrow A< B\)
e, Ta có:
\(A-B=\left(\frac{-7}{10^{2013}}+\frac{-15}{10^{2014}}\right)-\left(\frac{-15}{10^{2013}}+\frac{-7}{10^{2014}}\right)\)
\(=\frac{-7}{10^{2013}}+\frac{-15}{10^{2014}}-\frac{-15}{10^{2013}}-\frac{-7}{10^{2014}}\)
\(=\frac{8}{10^{2013}}-\frac{8}{10^{2014}}>0\)
Vậy A > B
Phần a;b;c;d;e;f liên quan tới
\(\frac{a}{b}< \frac{a+c}{b+c}\forall a< b\) \(\frac{a}{b}>\frac{a+c}{b+c}\forall a>b\) phép trừ thì ngược lại
Giải phần g
\(A=\frac{-7}{10^{2013}}+\frac{-7}{10^{2014}}+\frac{-8}{10^{2014}}\)
\(B=\frac{-7}{10^{2013}}+\frac{-8}{10^{2013}}+\frac{-7}{10^{2014}}\)
có đcB>A
k minh nha