Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
\(8192>3125\Rightarrow8192^7>3125^7=2^{91}>5^{35}\)
\(21^{12}=\left(21^3\right)^4=9261^4\)
\(54< 9261\Rightarrow54^4< 9261^4\Rightarrow54^4< 21^{12}\)
a 5.125.625=5.5^3.5^4=5^8
b 10.100.1000=10.10^2.10^3=10^6
c 8^4.16^5.32=2^3^4.2^4^5.2^5=2^12.2^20.2^5=2^37
a) = \(5^1\cdot5^3\cdot5^4=5^{1+3+4}=5^8\)
b) = \(10^1\cdot10^2\cdot10^3=10^{1+2+3}=10^6\)
c) = \(2^{12}\cdot2^{20}\cdot2^5=2^{12+20+5}=2^{37}\)
a) Ta có: \(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
Ta thấy: 15 > 14 => 515 > 514
Vậy 1255 > 257
b) \(9^{20}=\left(3^2\right)^{20}=3^{60}\)
\(27^{13}=\left(3^3\right)^{13}=3^{39}\)
Vì 60 > 39 => 360 > 339
Vậy 920 > 2713
c) \(3^{54}=3^{2.27}=3^2.3^{27}=9.3^{27}\)
\(2^{81}=2^{3.27}=2^3.2^{27}=8.2^{27}\)
Vì 9 > 8 và 327 > 227
Vậy 354 > 281
1030 = ( 103 )10 = 100010 2100 = ( 210) 10 = 102410
Vì 100010 < 102410 nên suy ra 1030 < 2100
nha
\(10^{30}< 2^{100}\)
\(125^5>25^7\)
\(9^{20}< 27^{13}\)
\(3^{54}< 2^{81}\)
\(5^{40}< 620^{10}\)
\(3^{484}< 4^{636}\)
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
Ta có :
\(A=1+5+5^2+...+5^{32}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)
\(A=31+31.5^3+...+31.5^{30}\)
\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31
Vậy \(A\) chia hết cho 31
\(a)\) Ta có :
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow\)\(ab+ac< ab+bc\)
\(\Leftrightarrow\)\(ac< bc\)
\(\Leftrightarrow\)\(a< b\)
Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)
Vậy ...
\(a)\) Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
a) 6256<1259
b) 544<2112
c) 1031<2100