Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{\left(-3\right)^n}{81}=9\Leftrightarrow\left(-3\right)^n=9.81=729\Rightarrow\left(-3\right)^n=\left(-3\right)^6\Rightarrow n=6\)
b) \(\frac{125}{5^n}=5^2\Leftrightarrow\frac{125}{5^n}=25\Rightarrow5^n=125:25=5\Rightarrow n=1\)
Bài 2:
a) \(625^5=\left(5^4\right)^5=5^{4.5}=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{3.7}=5^{21}\)
Thấy: \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)
b) \(3^{2n}=\left(3^2\right)^n=9^n\) ; \(2^{3n}=\left(2^3\right)^n=8^n\)
\(9^n>8^n\Rightarrow3^{2n}>2^{3n}\)
K cho mình nhé.
3^2n = (3^2)^n = 9^n
2^3n = (2^3)^n = 8^n
Vì 9^n > 8^n => 3^2n > 2^3n
7.2^13 < 8.2^13 = 2^3.2^13 = 2^3+13 = 2^16
=> 7.2^13 < 2^16
Tk mk nha
bạn Nguyễn Anh Quân bạn nên xen lại câu 7.213 và 216 đi bạn
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
Ta có: \(\frac{-11}{3^7.7^3}=\frac{-11}{\frac{3^7.7^4.1}{7}}=-\frac{77}{3^7.7^4}=\frac{-78+1}{3^7.7^4}=-\frac{78}{3^7.7^4}+\frac{1}{3^7.7^4}\)
Do \(3^7.7^4>3^4.7^4\) => \(\frac{78}{3^7.7^4}< \frac{78}{3^4.7^4}\) => \(-\frac{78}{3^7.7^4}>-\frac{78}{3^4.7^4}\)=> \(-\frac{78}{3^7.7^4}+\frac{1}{3^7.7^4}>-\frac{78}{3^4.7^4}\)
=> \(-\frac{11}{3^7.7^4}>-\frac{78}{3^4.7^4}\)
Ta có: \(\frac{-1987}{-1986}=\frac{1986+1}{1986}=1+\frac{1}{1986}>1\)
\(\frac{-1984}{-1985}=\frac{1985-1}{1985}=1-\frac{1}{1985}< 1\)
=> \(\frac{-1987}{-1986}>\frac{-1984}{-1985}\)
Ta có: \(\frac{x}{5}< \frac{5}{4}< \frac{x+2}{5}\)
<=> \(x< \frac{25}{4}< x+2\)
Xét: \(x+2>\frac{25}{4}\) => \(x>\frac{17}{4}\)
=> \(\frac{17}{4}< x< \frac{25}{4}\)
Do x thuộc Z => x \(\in\){5; 6}
a) 3^40= 3^4.10=(3^4)10=81^10
11^21> 11^20=11^2.10=(11^2)10=121^10
→ 3^40< 11^21
b) 2^195=2^15.13=(2^15)13=32768^13
3^130=3^10.13= (3^10)13=59049^13
→2^195<3^130
c) 2^90=2^5.18=(2^5)18= 32^18
5^36=5^2.18=(5^2)18=25^18
→2^90>5^36
a) \(5^{36}=\left(5^3\right)^{12}\)
\(11^{24}=\left(11^2\right)^{12}\)
\(5^3=125>11^2=121\)
b) \(3^{2n}=\left(3^2\right)^n\)
\(2^{3n}=\left(2^3\right)^n\)
\(3^2>2^3\)
a)(5^3)^12=15^12 ; (11^2)^12=22^12 vì 15<22 nên 15^12<22^12 =>5^36<11^24
còn câu b để mk xem đã r giúp bn sau