Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(35^2\equiv375\)( mod 425)
\(35^3=35.35^2\equiv35.375\equiv375\)( mod 425)
\(35^4=35.35^3\equiv35.375\equiv375\)( mod 425)
\(35^8=35^4.35^4\equiv375.375\equiv375\)( mod 425)
\(35^{16}\equiv35^8.35^8\equiv375.375\equiv375\)( mod 425)
\(35^{32}\equiv35^{16}.35^{16}\equiv375.375\equiv375\)( mod 425)
=> \(35^2-35^3+35^4-35^8+35^{16}+35^{32}\equiv375-375+375-375+375+375\equiv325\)( mod 425)
Vậy số dư cần tìm là 325
a) \(S=1^5+3^5+....+75^5+99^5\)
\(\left(2a+1\right)^5-\left(2a+1\right)=2a\left(2a+1\right)\left(2a+2\right)\left[\left(2a+1\right)^2+1\right]\)
\(\left(2a+1\right)^5-\left(2a+1\right)=4a\left(2a+1\right)\left(a+1\right)\left[\left(2a+1\right)^2+1\right]⋮4\)
\(S=\left(1^5-1\right)+\left(3^5-3\right)+....+\left(75^5-75\right)+\left(99^5-99\right)+\left(1+3+5+...+75+99\right)\)
\(\Leftrightarrow\begin{matrix}1^5-1⋮4\\3^5-3⋮4\\5^5-5⋮4\\...........\\75^5-5⋮4\\99^5-99⋮4\end{matrix}\)
\(S_1=1+3+5+7+...+75+99=\frac{\left(1+75\right)\left[\frac{75-1}{2}+1\right]}{2}+99=38.38+96+3\)
\(\Rightarrow S_1:4\) dư 3
\(\Leftrightarrow S\) chia 4 dư 3
a, 35.(34+86) + 65.(75+45)
=35.120 + 65.120
=120.(35+65)
=120. 100
=12000
a) 35 * 34 + 35 * 86 + 65 * 75 + 65 * 45
= 35 x ( 34 + 86 ) x 65 x ( 75 + 45 )
= 35 x 120 x 65 x 120
= 120 x ( 35 + 65 )
= 120 x 100
= 12000
a) (-35). 8 < (-35)
b) (-35). (-8) > (-35)