Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^n=243\)
\(\Leftrightarrow3^n=3^5\)
\(\Leftrightarrow n=5\left(TM\right)\)
Vậy \(n=5\)
b) \(2^n=256\)
\(\Leftrightarrow2^n=n^8\)
\(\Leftrightarrow n=8\left(TM\right)\)
Vậy \(n=8\)
c) \(3^{1234}=\left(3^2\right)^{617}=9^{617}\)
\(2^{1851}=\left(2^3\right)^{617}=8^{617}\)
Vì \(9^{617}>8^{617}\Leftrightarrow3^{1234}>2^{1851}\)
d) \(6^{30}=\left(6^2\right)^{15}=36^{15}\)
Vì \(36^{15}>12^{15}\Leftrightarrow6^{30}>12^{15}\)
1.
a, \(3^n=243\)
\(3^n=3^5\)
\(\Rightarrow n=5\)
b, \(2^n=256\)
\(2^n=2^8\)
\(\Rightarrow n=8\)
2.
a,\(3^{1234}\)và \(2^{1851}\)
\(3^{1234}=\left(3^2\right)^{617}=9^{617}\)
\(2^{1851}=\left(2^3\right)^{617}=8^{617}\)
Ta thấy \(9^{617}>8^{617}\Rightarrow3^{1234}>2^{1851}\)
b, \(6^{30}\)và \(12^{15}\)
\(6^{30}=\left(6^2\right)^{15}=36^{15}\)
Ta thấy \(36^{15}=12^{15}\Rightarrow6^{30}>12^{15}\)
B1:
a) 3n = 243
3n = 35
\(\Rightarrow\)n = 5
b) 2n = 256
2n = 28
=> n = 8
Câu 1:
a)\(3^n=243\)
Ta có:\(3^n=3^5\Rightarrow n=5\)
b)\(2^n=256\)
Ta có:\(2^n=2^8\Rightarrow n=8\)
Câu 2:
a)31234 và 21851
Ta có:\(3^{1234}=\left(3^2\right)^{617}=9^{617}\)
\(2^{1851}=\left(2^3\right)^{617}=8^{617}\)
Vì \(8^{617}< 9^{617}\)
Vậy \(2^{1851}< 3^{1234}\)
b)630 và 1215
Ta có:\(6^{30}=\left(6^2\right)^{15}=36^{15}\)
Vì \(12^{15}< 36^{15}\)
Vậy \(12^{15}< 6^{30}\)
Mấy câu này khá đơn giản quan trọng là đính đúng hay ko thôi kkk
Bài làm:
a,
+) 31234=(32)617=9617
+) 21851=(23)617=8617
=> 31234>21851
b,
+) 630=(62)15=3615
1215
=> 630>1215
a) 31234=(32)617=9617
21851=(23)617=8617
Vì 9617>8617 nên 31234> 21851
630=(62)15=3615
Vì 3615>1215 nên 630>1215.
A) Ta có: 3 ^ 1234 = ( 3 ^2)^617 = 9^ 617
2 ^ 1851 = (2 ^3)^617 = 8^ 617
vì 9 ^ 617> 8^617 nên 3^1234 > 2^1851
mình mới làm đc câu A) thôi . mình đang suy nghĩ câu B)
a/ \(3^{1234}=\left(3^2\right)^{617}=9^{617}\)
\(2^{1851}=\left(2^3\right)^{617}=8^{617}\)
\(9>8\Rightarrow9^{617}>8^{617}\Rightarrow3^{1234}>2^{1851}\)
b/ \(6^{30}=\left(6^2\right)^{15}=36^{15}\)
\(36>12\Rightarrow36^{15}>12^{15}\Rightarrow6^{30}>12^{15}\)
\(11^{12}< 11^{13}\)
\(7^4< 8^4\)
\(3^4>4^3\)
\(2^6>6^2\)
\(5^{15}>2^{30}\)
a) 13^1 <13^15
b)7^3 < 8^3
c) 7 - 6 = 13-12
d) 2^300 <3^200
c) \(2^{12}=2^{6^2}=64^2>12^2\)
a) \(5^3.6^2=5^2.6^2.5=30^2.5\)
\(30^3=30^2.30\)
\(\Rightarrow5^3.6^2< 30^3\)
Chúc bn hok tốt nha
đăng từng bài thui bạn êi ~.~
\(a)\)\(4x^3+12=120\)
\(\Leftrightarrow\)\(4x^3=108\)
\(\Leftrightarrow\)\(x^3=27\)
\(\Leftrightarrow\)\(x^3=3^3\)
\(\Leftrightarrow\)\(x=3\)
Vậy \(x=3\)
\(b)\) \(\left(4x-1\right)^2=25.9\)
\(\Leftrightarrow\)\(\left(4x-1\right)^2=5^2.3^2\)
\(\Leftrightarrow\)\(\left(4x-1\right)^2=\left(5.3\right)^2\)
\(\Leftrightarrow\)\(\left(4x-1\right)^2=15^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-1=15\\4x-1=-15\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=16\\4x=-14\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{16}{4}\\x=\frac{-14}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{-7}{2}\end{cases}}}\)
Vậy \(x=4\) hoặc \(x=\frac{-7}{2}\)
Chúc bạn học tốt ~
\(\left(2x-15\right)^{15}=\left(2x-15\right)^3\)
\(\Leftrightarrow\)\(\left(2x-15\right)^{15}-\left(2x-15\right)^3=0\)
\(\Leftrightarrow\)\(\left(2x-15\right)^3[\left(2x-15\right)^{12}-1]=0\)
\(\Leftrightarrow\)\(\left(2x-15\right)^3=0\)
Hoặc \(\left(2x-15\right)^{12}-1=0\)
\(\Leftrightarrow\)\(2x-15=0\)
Hoặc \(\left(2x-15\right)^{12}=1\)
\(\Leftrightarrow\)\(2x=15\)
Hoặc \(\orbr{\begin{cases}2x-15=1\\2x-15=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=16\\2x=14\end{cases}}}\)
\(\Leftrightarrow\)\(x=\frac{15}{2}=7,5\)
Hoặc \(\orbr{\begin{cases}x=\frac{16}{2}\\x=\frac{14}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=7\end{cases}}}\)
Vậy \(x=7\)\(;\)\(x=7,5\) hoặc \(x=8\)
Chúc bạn học tốt ~
a, Có 3 = (3) = 9 và 2 = (2) = 8 => 3 > 2
b, Có 6 = (6) = 36 => 6 > 12
37,37 x 5959,59 = 37 x 1,01 x 59 x 101,01 = 37 x 59 x 1,01 x 101,01
59,59 x 3737,37 = 59 x 1,01 x 37 x 101,01 = 37 x 59 x 1,01 x 101,01
=> 37,37 x 5959,59 = 59,59 x 3737,37
Kick mik nha