Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2711 và 848
2711 > 848
b) 6255 và 1257
6255 > 1257
c) 525 và 6*522
525 > 6*522
đ) 7*213 và 216
7*213 < 216
c) 99^20 = (99^2)^10 = 9801^10
Vì 9801<9999 => 9801^10<9999^10
hay 99^20<9999^10
a) Ta có 8^51>8^50
8^50 = (8^2)^25 = 64^25
Vì 48<64 => 48^25<64^25
hay 48^25<8^50
mà 8^50<8^51
=> 48^25<8^51
ta có :
\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)
mà \(5^{2017}>5^{2016}\)
\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)
\(\Rightarrow\)\(5^{2017}>25^{1008}\)
có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)
mà \(=25^{1008}\times5\)> \(25^{1008}\)
nên \(5^{2017}>25^{1008}\)
Bài 1: a) (2x+1)2 = 25
(2x+1)2 = 52
=> 2x + 1 = 5 hoặc 2x+1 = -5
=> x=2 hoặc x=-3
b) 2x+2 - 2x = 96
<=> 2x . 22 - 2x = 96
<=> 2x(4-1) =96
<=>2x = 96 :3 = 32 = 25
<=> x = 5
c) (x-1)3 = 125
<=> (x-1)3 = 53
<=> x-1=5
<=>x= 5 +1 = 6
2) a) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\)
\(\frac{21}{81^8}=\frac{21}{\left(3^4\right)^8}=\frac{21}{3^{32}}=\frac{21.3}{3^{33}}=\frac{63}{3^{33}}>\frac{1}{3^{33}}\)
=> \(\frac{21}{81^8}>\frac{1}{27^{11}}\)
b) Rõ ràng : 399 < 1121 => \(\frac{1}{399}>\frac{1}{11^{21}}\)
a) \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}\)=> \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=1-\sqrt[3]{\frac{4}{9}}\)
=> x = \(\frac{6}{5}-\frac{6}{5}.\sqrt[3]{\frac{4}{9}}\)
b) => \(\frac{1}{13}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\)
=> \(\left(\frac{1}{2}x-1\right)^4=\frac{13}{48}\)
=> \(\frac{1}{2}x-1=\sqrt[4]{\frac{13}{48}}\) hoặc \(\frac{1}{2}x-1=-\sqrt[4]{\frac{13}{48}}\)
=> \(x=2+2\sqrt[4]{\frac{13}{48}}\) hoặc \(x=2-2\sqrt[4]{\frac{13}{48}}\)
3^2n = (3^2)^n = 9^n
2^3n = (2^3)^n = 8^n
Vì 9^n > 8^n => 3^2n > 2^3n
7.2^13 < 8.2^13 = 2^3.2^13 = 2^3+13 = 2^16
=> 7.2^13 < 2^16
Tk mk nha
bạn Nguyễn Anh Quân bạn nên xen lại câu 7.213 và 216 đi bạn
Nguyễn Diệu Linh Tik cho mik nhé
So sánh
a)
Theo bài ra , ta có :
\(25^5\) và \(5^{25}\)
Xét \(25^5\) \(=\left(\left(5\right)^2\right)^5=5^{10}\)
Vì \(10< 25\)
\(\Rightarrow5^{10}< 5^{25}\)
Nên \(25^5\) < \(5^{25}\)
b)
Theo bài ra , ta có :
\(21^4\) và \(7^8\)
Xét \(7^8=\left(\left(7\right)^2\right)^4=49^4\)
Vì \(49>21\)
\(\Rightarrow49^4>21^4\)
Nên \(21^4< 7^8\)
c)
Theo bài ra , ta có :
\(11^{20}\) và \(1111^{10}\)
Xét \(11^{20}=\left(\left(11\right)^2\right)^{10}=121^{10}\)
Vì \(121< 1111\)
\(\Rightarrow121^{10}< 1111^{10}\)
Vậy \(11^{20}\) < \(1111^{10}\)
Chúc bạn Nguyễn Diệu Linh học tốt