K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

A=1 - 1/2 - 1/2^2 - 1/2^3 -...- 1/2^100

2A=2 - 1 - 1/2 - 1/2^2 -...- 1/2^99

2A-A=2 - 1 - 1/2 - 1/2^2 -...- 1/2^99 - 1 +1/2 + 1/2^2 + 1/2^3 +...+1/2^100

A=2-1-1+1/2^100

A=1/2^100

Vậy A=B

Bấm đúng cho mình nha

2 tháng 8 2016

- Nhìn là biết rồi đó bạn ~~

NM
18 tháng 7 2021

ta có 

\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)

Vậy A=B

19 tháng 8 2016

A=1+21+22+23+...+2100

2A=2+22+23+24+...+2101

2A-A=2101-1

A=2101-1

Ta có 2101>2101-1 nên B>A

19 tháng 8 2016

2A=2+2^2+2^3+2^4+....+2^101

=> 2A-A=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+...+2^100)

<=> A=2^101-1 > B=2^101

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

a/

$A-3=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}-3$

$=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})-3$

$=\frac{2}{2003}-\frac{1}{2004}-\frac{1}{2005}$

$=(\frac{1}{2003}-\frac{1}{2004})+(\frac{1}{2003}-\frac{1}{2005})$

$>0+0=0$

$\Rightarrow A>3$

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

b/

$B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}$

$=1-\frac{1}{2015}<1$

24 tháng 8 2018

Ta có \(A=1+2^2+2^3+....+2^{99}+2^{100}\)

\(2A=2+2^3+2^4+2^5+...+2^{100}+2^{101}\)

Suy ra \(2A-A=2^{101}-1=B\)

Do đó A =B

Vậy A =B 

24 tháng 8 2018

A = 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 

2A = 2 + 2^3 + 2^4 + ... + 2^100 + 2^101 

2A - A = ( 2 + 2^3 + 2^4 + ... + 2^100 + 2^101 ) - ( 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 ) 

A = 2^101 - 1 

Vì A = 2^101 - 1 và B = 2^101 - 1 

=> A = B 

Vậy A=B

DD
20 tháng 6 2021

\(A=\left(\frac{1}{2^2}-1\right)\times\left(\frac{1}{3^2}-1\right)\times...\times\left(\frac{1}{100^2}-1\right)\)

\(=-\left(1-\frac{1}{2^2}\right)\times\left(1-\frac{1}{3^2}\right)\times...\times\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{\left(2^2-1\right)\times\left(3^2-1\right)\times...\times\left(100^2-1\right)}{2^2\times3^2\times...\times100^2}\)

\(=-\frac{\left(1\times3\right)\times\left(2\times4\right)\times...\times\left(99\times101\right)}{2^2\times3^2\times...\times100^2}\)

\(=-\frac{\left(1\times2\times...\times99\right)\times\left(3\times4\times...\times101\right)}{\left(2\times3\times...\times100\right)\times\left(2\times3\times...\times100\right)}\)

\(=-\frac{1\times101}{100\times2}=-\frac{101}{200}< -\frac{1}{2}\)