Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a < b => a + 1 < b + 1
b) Ta có: a < b => a - 2 < b - 2
1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)
a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)
a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)
+ Với a/b < 1 <=> a/b < a+1/b+1
+ Với a/b = 1 <=> a/b = a+1/b+1
+ Với a/b > 1 <=> a/b > a+1/b+1
2) lm tương tự bài 1
1) Trường hợp a cũng là nguyên duơng
Xét a<b và a>b.
Xét a<b trước, ta có:
1-a/b=(b-a)/a..............(1)
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1...
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b
\(\frac{a^2}{1+a+a^2}\)
\(\frac{1}{1+a}\)
\(\frac{b^2}{1+b+b^2}\)=\(\frac{1}{1+b}\)
vì a>b nên \(\frac{a^2}{1+a+a^2}\)>\(\frac{b^2}{1+b+b^2}\)
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
A = 30 + 31 + 32 + ... + 32017
3A = 31 + 32 + 33 + ... + 32018
3A - A = (31 + 32 + 33 + ... + 32018) - (30 + 31 + 32 + ... + 32017)
2A = 32018 - 30
Ta thấy: 32018 - 30 < 32018 \(\Rightarrow\) 2A < B. \(\Rightarrow\) A < B
(a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0
=> a + b + c = 0
Hoặc (a - b)2 + (b - c)2 + (c - a)2 = 0
Mặt khác : (a - b)2 \(\ge\)0
(b - c)2 \(\ge\)0
(c - a)2 \(\ge\)0
=> (a - b)2 = 0 => a - b = 0 => a = b
(b - c)2 = 0 b - c = 0 b = c
(c - a)2 = 0 c - a = 0 c = a
=> a = b = c
Ta có :
\(B=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
\(B=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\) (quy đồng cho các hạng tử cùng mẫu rồi cộng)
\(B=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{bca}\)
Mà a = b = c
Thay vào , ta lại có :
\(B=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8.a^3}{a^3}=8\)
=> B = 8
Bài 1:
a) \(0,\left(3\right)+3\dfrac{1}{3}+0,4\left(2\right)\)
\(=\dfrac{1}{3}+\dfrac{10}{3}+\dfrac{19}{45}\)
\(=\dfrac{184}{45}\)
b) \(\dfrac{4}{9}+1,2\left(31\right)-0,\left(13\right)\)
\(=\dfrac{4}{9}+\dfrac{1219}{990}-\dfrac{13}{99}\)
\(=\dfrac{1789}{990}\)
Bài 2:
a) \(0,\left(37\right)x=1\)
\(\Leftrightarrow\dfrac{37}{99}.x=1\)
\(\Leftrightarrow x=1:\dfrac{37}{99}\)
\(\Leftrightarrow x=\dfrac{99}{37}\)
b) \(0,\left(26\right)x=1,2\left(31\right)\)
\(\Leftrightarrow\dfrac{26}{99}x=\dfrac{1219}{990}\)
\(\Leftrightarrow x=\dfrac{1219}{990}:\dfrac{26}{99}\)
\(\Leftrightarrow x=\dfrac{1219}{260}\)
Chúc bạn học tốt!
1.a) Ta có:
\(\frac{18}{-25}=-\frac{18.12}{25.12}=-\frac{216}{300}< -\frac{213}{300}\)
Vậy \(-\frac{213}{300}>\frac{18}{-25}\)
b) Ta có:
\(0,75>0>-\frac{3}{4}\)
Vậy \(0,75>-\frac{3}{4}\)
2, * Khi a, b cùng dấu thì \(\frac{a}{b}>0\)
* Khi a, b khác dấu thì \(\frac{a}{b}< 0\)
Đây là kiến thức cơ bản !