K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

a) Ta có: a < b => a + 1 < b + 1

b) Ta có: a < b => a - 2 < b - 2

24 tháng 8 2016

1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)

a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)

a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)

+ Với a/b < 1 <=> a/b < a+1/b+1

+ Với a/b = 1 <=> a/b = a+1/b+1

+ Với a/b > 1 <=> a/b > a+1/b+1

2) lm tương tự bài 1

24 tháng 8 2016

1) Trường hợp a cũng là nguyên duơng 
Xét a<b và a>b. 
Xét a<b trước, ta có: 
1-a/b=(b-a)/a..............(1) 
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1... 
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b 

\(\frac{a^2}{1+a+a^2}\)

\(\frac{1}{1+a}\)

\(\frac{b^2}{1+b+b^2}\)=\(\frac{1}{1+b}\)

vì a>b nên  \(\frac{a^2}{1+a+a^2}\)>\(\frac{b^2}{1+b+b^2}\)

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

16 tháng 9 2017

A = 30 + 31 + 32 + ... + 32017

3A = 31 + 32 + 33 + ... + 32018

3A - A = (31 + 32 + 33 + ... + 32018) - (30 + 31 + 32 + ... + 32017)

2A = 32018 - 30

Ta thấy: 32018 - 30 < 32018   \(\Rightarrow\)   2A < B.   \(\Rightarrow\)  A < B

5 tháng 3 2017

(a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0

=> a + b + c = 0 

Hoặc (a - b)2 + (b - c)2 + (c - a)2 = 0

Mặt khác : (a - b)2 \(\ge\)0

                (b - c)2 \(\ge\)0

                (c - a)2 \(\ge\)0

=> (a - b)2 = 0     =>   a - b = 0    => a = b

     (b - c)2 = 0            b - c = 0         b = c

     (c - a)2 = 0            c - a = 0         c = a

=> a = b = c

Ta có :

\(B=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)

\(B=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\) (quy đồng cho các hạng tử cùng mẫu rồi cộng)

\(B=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{bca}\)

Mà a = b = c

Thay vào , ta lại có :

\(B=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8.a^3}{a^3}=8\)

=> B = 8

5 tháng 3 2017

đợi mình một chút mình bít làm
 

19 tháng 10 2017

Bài 1:

a) \(0,\left(3\right)+3\dfrac{1}{3}+0,4\left(2\right)\)

\(=\dfrac{1}{3}+\dfrac{10}{3}+\dfrac{19}{45}\)

\(=\dfrac{184}{45}\)

b) \(\dfrac{4}{9}+1,2\left(31\right)-0,\left(13\right)\)

\(=\dfrac{4}{9}+\dfrac{1219}{990}-\dfrac{13}{99}\)

\(=\dfrac{1789}{990}\)

Bài 2:

a) \(0,\left(37\right)x=1\)

\(\Leftrightarrow\dfrac{37}{99}.x=1\)

\(\Leftrightarrow x=1:\dfrac{37}{99}\)

\(\Leftrightarrow x=\dfrac{99}{37}\)

b) \(0,\left(26\right)x=1,2\left(31\right)\)

\(\Leftrightarrow\dfrac{26}{99}x=\dfrac{1219}{990}\)

\(\Leftrightarrow x=\dfrac{1219}{990}:\dfrac{26}{99}\)

\(\Leftrightarrow x=\dfrac{1219}{260}\)

Chúc bạn học tốt!

19 tháng 10 2017

Gửi đến toàn bộ thành viên HOC24.

Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn

chúc các bạn học tốt

9 tháng 6 2016

1.a) Ta có:

\(\frac{18}{-25}=-\frac{18.12}{25.12}=-\frac{216}{300}< -\frac{213}{300}\)

Vậy \(-\frac{213}{300}>\frac{18}{-25}\)

b) Ta có:

\(0,75>0>-\frac{3}{4}\)

Vậy \(0,75>-\frac{3}{4}\)

2, * Khi a, b cùng dấu thì \(\frac{a}{b}>0\)

* Khi a, b khác dấu thì \(\frac{a}{b}< 0\)

Đây là kiến thức cơ bản !

15 tháng 7 2017

ai có biết câu trả lời này thì nhắn lại cho mình