Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vd 3:
a) 9/10 > 5/42 b) -4/27 < 10/-73
Vd 4:
5/-6: -7/12; 5/8; 3/4
Vd 5:
x<y
Vd 6:
-16/27= -16/27> -16/29
Ta có: \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
=> \(8192^7>3125^7\)
Vậy \(2^{91}>5^{35}\)
Ta có: 291 = (213)7 = 89127
535 = (55)7 = 31257
Vì 8912 > 3125 => 81927 > 31257 => 291 > 535
Vậy 291 > 535
a)27^11=(3^3)^11=3^33
81^8=(3^4)8=3^32
vì 3^33>3^32 nên 27^11>81^8
b)ko biết làm chỉ biết 3^150>2^225
c)27^50=27^5x10=(27^5)^10=14348907^10
240^30=240^3x10=(240^3)^10=13824000^10
suy ra 27^50>240^30
a) Ta có: \(27^{11}=\left(3^3\right)^{^{11}}=3^{3.11}=3^{33}\)
\(81^8=\left(3^4\right)^{^8}=3^{4.8}=3^{32}\)
Vì \(3^{33}>3^{32}\)
nên \(27^{11}>81^8\)
b) Ta có: \(3^{150}=3^{2.75}=\left(3^2\right)^{^{75}}=9^{75}\)
\(2^{225}=2^{3.75}=\left(2^3\right)^{^{75}}=8^{75}\)
vì \(9^{75}>8^{75}\)
nên \(3^{150}>2^{225}\)
c) Ta có:
\(\frac{27^{50}}{240^{30}}=\frac{27^{30}.27^{20}}{240^{30}}=\frac{3^{30}.3^{30}.3^{30}.3^{20}.3^{20}.2^{20}}{3^{30}.80^{30}}\)
\(=\frac{3^{120}}{80^{30}}=\frac{\left(3^4\right)^{^{30}}}{80^{30}}=\frac{81^{30}}{80^{30}}\)
Vì \(\frac{81^{30}}{80^{30}}>1\)\(\Rightarrow\frac{27^{50}}{240^{30}}>1\)\(\Rightarrow27^{50}>240^{30}\)
a) có \(\sqrt{2}\) <\(\sqrt{3}\)
5= \(\sqrt{25}\) >\(\sqrt{11}\)
=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
b)có \(\sqrt{21}>\sqrt{20}\)
-\(\sqrt{5}\) >-\(\sqrt{6}\)
=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
Ta có\(8< 16\Rightarrow\sqrt{8}< \sqrt{16}=4\)
và \(5< 9\Rightarrow\sqrt{5}< \sqrt{9}=3\)
\(\Rightarrow\sqrt{8}-\sqrt{5}< \sqrt{16}-\sqrt{9}=4-3=1\)
Vậy \(\sqrt{8}-\sqrt{5}< 1\)
Ta có \(\sqrt{63-27}=\sqrt{36}=6\)
lại có\(63< 64\Rightarrow\sqrt{63}< \sqrt{64}=8\)và \(27>4\Rightarrow\sqrt{27}>\sqrt{4}=2\)
\(\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{64}-\sqrt{4}=8-2=6\)
mà\(\sqrt{63-27}=6\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)
Vậy\(\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)
a/ Ta có:
\(\frac{3}{124}=\frac{30}{1240}\) ; \(\frac{1}{41}=\frac{30}{1230}\) ; \(\frac{5}{207}=\frac{30}{1242}\) ; \(\frac{2}{83}=\frac{30}{1245}\)
Vì các phân số trên đều cùng tử nên ta so sánh mẫu : 1230<1240<1242<1242
=> \(\frac{30}{1230}>\frac{30}{1240}>\frac{30}{1242}>\frac{30}{1245}\)
Hay : \(\frac{1}{41}>\frac{3}{124}>\frac{5}{207}>\frac{2}{83}\)
b/ Ta có:
\(\frac{16}{9}=\frac{48}{27};\frac{24}{13}=\frac{48}{26}\)
Vì 27>26
=> \(\frac{16}{9}< \frac{24}{13}\)
3124=3012403124=301240 ; 141=301230141=301230 ; 5207=3012425207=301242 ; 283=301245283=301245
Vì các phân số trên đều cùng tử nên ta so sánh mẫu : 1230<1240<1242<1242
=> 301230>301240>301242>301245301230>301240>301242>301245
Hay : 141>3124>5207>283141>3124>5207>283
b/ Ta có:
169=4827;2413=4826169=4827;2413=4826
Vì 27>26
=> 169<2413169<2413
\(27^5=\left(3^3\right)^5=3^{15}\)
\(245^3>243^3=3^3.81^3=3^3.\left(3^4\right)^3=3^3.3^{12}=3^{15}\)
\(\Rightarrow245^3>27^5\)
\(27^5\)\(=14348907\)
\(245^3=14706125\)
Vậy : \(14348907>14706125\)
Nên : \(27^5< 245^3\)