Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}\)
\(B=1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{2}{2016}\)
\(B=\left(1+1+1\right)-\left(\frac{1}{2017}+\frac{1}{2018}-\frac{2}{2016}\right)\)
\(B=3-\left(...\right)< 3\)
P/s :
\(\left(...\right)la`\left(\frac{1}{2017}+\frac{1}{2018}-\frac{2}{2016}\right)\)
quên ^^
Ta có:
\(2016^{10}+2016^9=2016^9.2016+2016^9=2016^9(2016+1)=2017.2016^9\)
\(2017^{10}=2017.2017^9\)
Xét thấy: \(2016<2017\Rightarrow 2016^9<2017^9\Rightarrow 2017.2016^9<2017.2017^9\)
\(\Rightarrow 2016^{10}+2016^9<2017^{10}\)
Vì 20162016 + 1 < 20162017 + 1
\(\Rightarrow\frac{2016^{2016}+1}{2016^{2017}+1}< \frac{2016^{2016}+1+2015}{2016^{2016}+1+2015}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016\left(2016^{2015}+1\right)}{2016\left(2016^{2016}+1\right)}\)
\(=\frac{2016^{2015}+1}{2016^{2016}+1}=B\)
\(\Rightarrow\)A < B
Ta có :
\(A=\frac{2016^{2016}+1}{2016^{2017}+1}< \frac{2016^{2016}+2015+1}{2016^{2017}+2015+1}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016.\left(2016^{2015}+1\right)}{2016.\left(2016^{2016}+1\right)}\)
\(=\frac{2016^{2015}+1}{2016^{2016}+1}=B\)
\(\Rightarrow A< B\)
Ta có :
\(\frac{2015}{2016}>\frac{2015}{2016+2017}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)
\(\Rightarrow A>\frac{2015+2016}{2016+2017}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt !!!
\(A=\frac{2015}{2016}+\frac{2016}{2017}\) \(B=\frac{2015+2016}{4033}\)
\(A=\frac{2015}{2016}+\frac{2016}{2017}\) \(B=\frac{2015}{4033}+\frac{2016}{4033}\)
\(\Rightarrow A>B\)
\(\left(6-5\right)^{2016}=1^{2016}=1\)
\(\left(7-6\right)^{2017}=1^{2017}=1\)
\(=>\left(6-5\right)^{2016}=\left(7-6\right)^{2017}\left(=1\right)\)
Ủng hộ nha
Thanks
câu trả lời là ; <
giải chi tiết giúp tớ đi