\(\sqrt{27}-\sqrt{2}\) và y= 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

\(a,x=\sqrt{27}-\sqrt{2}\)\(=3\sqrt{3}-\sqrt{2}>3\sqrt{3}-\sqrt{3}=2\sqrt{3}\)

Mà: \(y=\sqrt{3}< 2\sqrt{3}\)

\(\Rightarrow x>y\)

\(b,x=\sqrt{5\sqrt{6}}\Rightarrow x^4=5^2.6=150\)

\(y=\sqrt{6\sqrt{5}}\Rightarrow y^4=6^2.5=180\)

\(\Rightarrow x^4< y^4\Rightarrow x< y\left(x,y>0\right)\)

\(c,x=2m;y=m+2\)

Ta có: \(x-y=2m-\left(m+2\right)=m-2\)

Ta xét các trường hợp:

  • Nếu \(m< 2\Rightarrow m-2< 0\Rightarrow x< y\)
  • Nếu \(m=2\Rightarrow m-2=0\Rightarrow x=y\)
  • Nếu \(m>2\Rightarrow m-2=0\Rightarrow x>y\)
14 tháng 10 2018

Q= [\(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}\)]\(:\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(Q=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(Q=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(Q=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

15 tháng 10 2018

phan 3 nua

1 tháng 8 2018

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y

30 tháng 8 2020

\(a\)

\(\sqrt{7}+\sqrt{15}\) 

\(=\sqrt{7+15}\)

\(=4,69\)

\(4,69< 7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

\(b\)

\(\sqrt{7}+\sqrt{15}+1\)

\(=\sqrt{7+15}+1\)

\(=4,69+1\)

\(=5,69\)

\(\sqrt{45}\)

\(=6,7\)

\(5,69< 6,7\)

\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)

\(c\)

\(\frac{23-2\sqrt{19}}{3}\)

\(=\frac{22.4,53}{3}\)

\(=\frac{95,7}{3}\)

\(=31,9\)

\(\sqrt{27}\)

\(=5,19\)

\(31,9>5,19\)

\(\text{​​}\Rightarrow\text{​​}\text{​​}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)

\(d\)

\(\sqrt{3\sqrt{2}}\)

\(=\sqrt{3.1,41}\)

\(=\sqrt{4,23}\)

\(=2,05\)

\(\sqrt{2\sqrt{3}}\)

\(=\sqrt{2.1,73}\)

\(=\sqrt{3,46}\)

\(=1,86\)

\(2,05>1,86\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

\(Học \) \(Tốt !!!\)

30 tháng 8 2020

a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)

Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)

b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)

Lại có : \(\sqrt{45}< \sqrt{49}< 7\)

Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)

\(\Rightarrow2\sqrt{19}>2.4=8\)

\(\Rightarrow-2\sqrt{19}< -8\)

\(\Rightarrow23-2\sqrt{19}< 23-8=15\)

\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)

Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)

d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)

\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

6 tháng 8 2018

\(a.\) Xét : \(\sqrt{27}-\sqrt{2}-\sqrt{3}=3\sqrt{3}-\sqrt{2}-\sqrt{3}=2\sqrt{3}-\sqrt{2}=\sqrt{2}\left(\sqrt{6}-1\right)>0\)

\(\sqrt{27}-\sqrt{2}>\sqrt{3}\)

\(b.\) Gỉa sử : \(\sqrt{5\sqrt{6}}>\sqrt{6\sqrt{5}}\)

\(5\sqrt{6}>6\sqrt{5}\)\(\sqrt{30}\left(\sqrt{5}-\sqrt{6}\right)< 0\)

\(\sqrt{5\sqrt{6}}< \sqrt{6\sqrt{5}}\)