Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=\left(6-5\right)x^2+\left(9+2\right)xy-y^2\)
\(M=x^2+11xy-y^2\)
* \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\forall x\\\left(3y+4\right)^{2020}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\forall x,y\)
Mà đề cho \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
=> \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)
=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Thay x = 5/2 ; y = -4/3 vào M ta được :
\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)
\(M=\frac{-1159}{36}\)
Vậy giá trị của M = -1159/36 khi x = 5/2 ; y = -4/3
Không chắc nha
\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-3\)
\(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1=0\)
\(\frac{x+2+2018}{2018}+\frac{x+3+2017}{2017}+\frac{x+4+2016}{2016}=0\)
\(\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)
\(\left(x+2020\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
\(\Rightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
#Sakura
\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-\overrightarrow{3}\)
=>\(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1=0\)
=>\(\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)
=>\(\left(x+2020\right):\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
=>\(\left(x+2020\right)=0\)
=>\(x=0-2020\)
=>\(x=-2020\)
vậy ....
chúc bạn học tốt!
a, \(\left|x-3,5\right|+\left|x-\frac{1}{3}\right|=0\)
\(\hept{\begin{cases}x-3,5\ge0\forall x\\x-\frac{1}{3}\ge0\forall x\end{cases}\Rightarrow\left|x-3,5\right|+\left|x-\frac{1}{3}\right|\ge0\forall x}\)
Dấu ''='' xảy ra <=> \(x-3,5=0\Leftrightarrow x=3,5\)
\(x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\)
b, \(\left|x\right|+x=\frac{1}{3}\Leftrightarrow\left|x\right|=\frac{1}{3}-x\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-x\\x=-\frac{1}{3}+x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\0\ne-\frac{1}{3}\end{cases}\Leftrightarrow}x=\frac{1}{6}}\)
c, \(\left|x-2\right|=x\Leftrightarrow\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}\Leftrightarrow\orbr{\begin{cases}-2\ne0\\x=1\end{cases}}}\)
d, tương tự c
Sửa ý a) của bạn @akirafake
a) \(\left|x-3,5\right|+\left|x-1,3\right|=0\)
Ta có : \(\left|x-3,5\right|+\left|x-1,3\right|=\left|-\left(x-3,5\right)\right|+\left|x-1,3\right|=\left|3,5-x\right|+\left|x-1,3\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(\left|3,5-x\right|+\left|x-1,5\right|\ge\left|3,5-x+x-1,5\right|=\left|2\right|=2\)
mà \(\left|x-3,5\right|+\left|x-1,3\right|=0\)( vô lí )
Vậy không có giá trị của x thỏa mãn
b) \(\left|x\right|+x=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{3}-x\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}-x\\x=x-\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{1}{3}\\0x=-\frac{1}{3}\end{cases}\Rightarrow}2x=\frac{1}{3}\Rightarrow x=\frac{1}{6}\)
c) \(\left|x\right|-x=\frac{3}{4}\)
=> \(\left|x\right|=\frac{3}{4}+x\)
=> \(\orbr{\begin{cases}x=\frac{3}{4}+x\\x=-x-\frac{3}{4}\end{cases}\Rightarrow}\orbr{\begin{cases}0x=\frac{3}{4}\\2x=-\frac{3}{4}\end{cases}}\Rightarrow2x=-\frac{3}{4}\Rightarrow x=-\frac{3}{8}\)
d) \(\left|x-2\right|=x\)
=> \(\orbr{\begin{cases}x-2=x\\x-2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=2\\2x=2\end{cases}}\Rightarrow2x=2\Rightarrow x=1\)
e) \(\left|x+2\right|=x\)
=> \(\orbr{\begin{cases}x+2=x\\x+2=-x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=-2\\2x=-2\end{cases}}\Rightarrow2x=-2\Rightarrow x=-1\)
Thế x = -1 ta được :
\(\left|-1+2\right|=-1\)( vô lí )
=> Không có giá trị của x thỏa mãn
1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
\(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
=> x = 75.4 : 15 = 20 ;
y = 60.4 : 15 = 16 ;
z = 45.4 : 15 = 12
Vậy x = 20 ; y = 16 ; z = 12
2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Nếu x + y + z + t = 0
=> x + y = - (z + t)
=> y + z = - (t + x)
=> z + t = - (x + y)
=> t + x = - (z + y)
Khi đó :
P = \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
=> P = 4
Nếu x + y + z + t khác 0
=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)
=> y + z + t = z + t + x = t + x + y = x + y + z
=> x =y = z = t
Khi đó : P = 1 + 1 + 1 + 1 = 4
Vậy nếu x + y + z + t = 0 thì P = - 4
nếu x + y + z + t khác 0 thì P = 4
1) So sánh
Ta có : 224 = 23.8 = (23)8 = 88
316 = 32.8 = (32)8 = 98
Vì 88 < 98
=> 224 < 316
2) Tính
\(\left(0,25\right)^4.1024=\left(\frac{1}{4}\right)^4.1024=\frac{1}{4^4}.2^{10}=\frac{1}{\left(2^2\right)^4}.2^{10}=\frac{1}{2^8}.2^{10}=\frac{2^{10}}{2^8}=2^2=4\)
3) Tìm x nguyên
(x - 1)x + 2 = (x - 1)x + 6
=> (x - 1)x + 6 - (x - 1)x + 2 = 0
=> (x - 1)x + 2.[(x - 1)4 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1^4\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 0 => x = 1(tm)
Nếu x - 1 = - 1 => x = 0(tm)
Nếu x - 1 = 1 => x = 2(tm)
Vậy \(x\in\left\{1;0;2\right\}\)
Bài 1:Ta có:
2^24=2^(6.4)=64^4
3^16=3^(4.4)=81^4
Bài 2.Ta có:
(0.25)^4=1/4.1/4.1/4.1/4=1/256
=>1/256.1024=4
Bài 3:
Ta có:(x-1)^(x+2)=(x-1)^(x+6)
Chia hai vế cho (x-1)^(x+2),do đó:
1=(x-1)^(x+4)
<=>x-1=1
<=>x=2
Hoặc chia hai vế cho (x-1)^(x+6)
(x-1)^(x-4)=1
<=>x-1=1
<=>x=2
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
\(x^{2017}< x^{2018}\)\(\Leftrightarrow x< 0\)và \(x>1\)(1)
\(x^{2017}=x^{2018}\Leftrightarrow x=0\)hoặc \(x=1\)(2)
Từ (1) và (2) \(\Rightarrow x^{2017}\le x^{2018}\)
so sánh 2 lũy thừa cùng cơ số, cơ số nào có mũ lớn hơn thí lớn hơn
\(x^{2017}< x^{2018}\)