\(\sqrt{27}-\sqrt{2}\)và  y=\(\sqrt{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

\(a,x=\sqrt{27}-\sqrt{2}\)\(=3\sqrt{3}-\sqrt{2}>3\sqrt{3}-\sqrt{3}=2\sqrt{3}\)

Mà: \(y=\sqrt{3}< 2\sqrt{3}\)

\(\Rightarrow x>y\)

\(b,x=\sqrt{5\sqrt{6}}\Rightarrow x^4=5^2.6=150\)

\(y=\sqrt{6\sqrt{5}}\Rightarrow y^4=6^2.5=180\)

\(\Rightarrow x^4< y^4\Rightarrow x< y\left(x,y>0\right)\)

\(c,x=2m;y=m+2\)

Ta có: \(x-y=2m-\left(m+2\right)=m-2\)

Ta xét các trường hợp:

  • Nếu \(m< 2\Rightarrow m-2< 0\Rightarrow x< y\)
  • Nếu \(m=2\Rightarrow m-2=0\Rightarrow x=y\)
  • Nếu \(m>2\Rightarrow m-2=0\Rightarrow x>y\)
6 tháng 8 2018

\(a.\) Xét : \(\sqrt{27}-\sqrt{2}-\sqrt{3}=3\sqrt{3}-\sqrt{2}-\sqrt{3}=2\sqrt{3}-\sqrt{2}=\sqrt{2}\left(\sqrt{6}-1\right)>0\)

\(\sqrt{27}-\sqrt{2}>\sqrt{3}\)

\(b.\) Gỉa sử : \(\sqrt{5\sqrt{6}}>\sqrt{6\sqrt{5}}\)

\(5\sqrt{6}>6\sqrt{5}\)\(\sqrt{30}\left(\sqrt{5}-\sqrt{6}\right)< 0\)

\(\sqrt{5\sqrt{6}}< \sqrt{6\sqrt{5}}\)

6 tháng 7 2018

Tính ra rồi so sánh

6 tháng 7 2018

a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)

ta có \(\sqrt{5}>\sqrt{3}\)\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

1 tháng 8 2018

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y

27 tháng 5 2017

chú ý\(x=\sqrt{x}^2\) tương tự với y , và các số tự nhiên dương

\(A=\frac{\sqrt{x}^2+2\sqrt{x}-3}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)}=\sqrt{x}+3\)

\(B=\frac{\left(2\sqrt{y}\right)^2+3\sqrt{y}-7}{4\sqrt{y}+7}=\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}=\sqrt{y}-1\)

\(C=\frac{\sqrt{x}^2\sqrt{y}-\sqrt{y}^2\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)

\(D=\frac{\sqrt{x}^2-3\sqrt{x}-4}{\sqrt{x}^2-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)}\)

\(E=\sqrt{1+2\sqrt{5}+5}+\sqrt{\sqrt{5}-2\sqrt{5}+1}=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

=>\(E=1+\sqrt{5}+\sqrt{5}-1=2\sqrt{5}\)

CÂU CUỐI chưa làm đc

28 tháng 5 2017

ý cuối cùng này :

\(D=\sqrt{13-4\sqrt{10}}+\sqrt{13+4\sqrt{10}}\)lấy bình phương 2 vế ta có

\(D^2=13-4\sqrt{10}+13+4\sqrt{10}+2\sqrt{13-4\sqrt{10}}\sqrt{13+4\sqrt{10}}\)

\(D^2=26+2\sqrt{13^2-16\sqrt{10}^2}\Leftrightarrow D^2=26+2\sqrt{9}\)

\(D^2=32\Leftrightarrow D=\sqrt{32}=4\sqrt{2}\)