\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

Áp dụng BĐT Cauchy–Schwarz ta được:

\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)

Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)

Vậy đẳng thức ko xảy ra hay \(x>y\)

1 tháng 8 2018

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y

21 tháng 7 2018

Áp dụng bđt Svacxo ta có :

\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu bằng xảy ra khi:

\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)

Suy ra không xảy ra dấu bằng

Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

23 tháng 6 2017

không thể cm

NV
5 tháng 7 2020

\(A=\frac{\sqrt{2017}^2}{\sqrt{2018}}+\frac{\sqrt{2018}^2}{\sqrt{2017}}\ge\frac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu "=" ko xảy ra nên \(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}>\sqrt{2018}+\sqrt{2017}\)

31 tháng 7 2018

a/ Ta có:

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

31 tháng 7 2018

a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

16 tháng 6 2018

Đat 2017,5=t Ta có

\(\sqrt{\dfrac{\left(t+0,5\right)^2+\left(t-0,5\right)^2\cdot\left(t+0,5\right)^2+\left(t-0,5\right)^2}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\sqrt{\dfrac{t^2+t+0,25+t^4-0,5t^2+0,0625+t^2-t+0,25}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{\sqrt{t^4+1,5t^2+0,5625}}{t+0,5}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{t^2+0,75+t-0,5}{t+0,5}\\ =\dfrac{\left(t+0,5\right)^2}{t+0,5}\\ =t+0,5\)thay t=2017,5 vào suy ra A=2017,5+0,5=2018

16 tháng 6 2018

Giải:

\(\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{\left(\dfrac{1}{2017}\right)^2}+\dfrac{1}{\left(-\dfrac{2018}{2017}\right)^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\left(\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2017}}+\dfrac{1}{-\dfrac{2018}{2017}}\right)^2}+\dfrac{2017}{2018}\) (\(\left\{{}\begin{matrix}1>0\\2017^2>0\\\dfrac{2017^2}{2018^2}>0\end{matrix}\right.\Leftrightarrow1+2017^2+\dfrac{2017^2}{2018^2}>0\ne0\))

\(=1+2017+-\dfrac{2017}{2018}+\dfrac{2017}{2018}\)

\(=2018\)

Vậy ...

Sửa đề: \(M=\sqrt{1^2+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{1^2+\dfrac{1}{\left(\dfrac{1}{2017}\right)^2}+\dfrac{1}{\left(-\dfrac{2018}{2017}\right)^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\left(\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2017}}+\dfrac{1}{-\dfrac{2018}{2017}}\right)^2}+\dfrac{2017}{2018}\)

\(=1+2017-\dfrac{2017}{2018}+\dfrac{2017}{2018}\)

=2018

Bài 1: 

\(A=\dfrac{2}{\sqrt{2017}+\sqrt{2015}}\)

\(B=\dfrac{2}{\sqrt{2019}+\sqrt{2017}}\)

mà \(\sqrt{2015}< \sqrt{2019}\)

nên A>B