\(\frac{2012x2014+305}{2011x2014+304}\)


 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

nhỏ hơn 1 nha

13 tháng 4 2019

\(\frac{2012\times2014+305}{2011\times2014+304}\)

\(\text{Ta so sánh : 2012 x 2014 + 305 và 2011 x 2014 + 304}\)

\(\text{Vì }2012\times2014>2011\times2014\)

\(\text{Mà 305 }>304\)

\(\Rightarrow2012\times2014+305>2011\times2014+304\)

\(\Rightarrow\frac{2012\times2014+305}{2011\times2014+304}>1\)

16 tháng 6 2017

\(\frac{1+x}{2+x}>\frac{1}{2}\) vì một số cộng với một số bao giờ cũng lớn hơn số ban đầu 

16 tháng 6 2017

\(\frac{1+x}{2+x}\)và \(\frac{1}{2}\)

\(\frac{1+x}{2+x}=\frac{2\left(1+x\right)}{2\left(2+x\right)}=\frac{2x+2}{2x+4}\)

\(\frac{1}{2}=\frac{2+x}{2x+4}\)

\(2+x< 2x+2\)

\(\Rightarrow\frac{1+x}{2+x}>\frac{1}{2}\)

17 tháng 5 2021

                                                                     \(Giải\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)\(+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2014}\)

      \(A=0+0+0+...+0+0\)

      \(\Rightarrow A=0\)   

\(a.\)\(A< 1\)

b.   \(A< \frac{3}{4}\)

25 tháng 9 2021

help me!!!

5 tháng 7 2016

\(\frac{2006}{2007}< \frac{2007}{2007}=1\)

\(\frac{2007}{2008}< \frac{2008}{2008}=1\)

\(\frac{2008}{2009}< \frac{2009}{2009}=1\)

\(\Rightarrow a=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}< 1+1+1=3\)

5 tháng 7 2016

\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}\)

\(A=\left(1-\frac{1}{2007}\right)+\left(1-\frac{1}{2008}\right)+\left(1-\frac{1}{2009}\right)\)

\(A=\left(1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(A=3-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)< 3\)

2 tháng 6 2017

a) Vì \(\frac{87}{39}>1\)

\(\frac{2015}{2017}< 1\)

\(\Rightarrow\frac{87}{39}>\frac{2015}{2017}\)

2 tháng 6 2017

\(\frac{n}{n+1}\)và \(\frac{n+1}{n+3}\)

\(\Rightarrow\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\left(n+3\right)}\)

\(\Rightarrow\frac{n+1}{n+3}=\frac{\left(n+1\right)^2}{\left(n+3\right)\left(n+1\right)}\)

\(\Rightarrow n\cdot\left(n+3\right)=n^2+3n\)

\(\Rightarrow\left(n+1\right)^2=n^2+2n+1\)

Dấu bằng chỉ xảy ra khi n = 1

Còn với mọi trường hợp n > 1 thì 

\(\frac{n}{n+1}>\frac{n+1}{n+3};n^2+3n>n^2+2n+1\)

13 tháng 12 2017

băng nhau

13 tháng 12 2017

Nhưng mình cần lời giải chi tiết nhé 🤔

18 tháng 10 2018

a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)

có :

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)

nên :

\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow A< 1-\frac{1}{2011}\)

\(\Rightarrow A< \frac{2010}{2011}< 1\)

b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\) 

\(\frac{3}{4}=1-\frac{1}{4}\)

\(\frac{1}{4}>\frac{1}{2011}\)

nên :

\(A>\frac{3}{4}\)

19 tháng 3 2020

a, A bé hơn 1

b, A bé hơn 3/4