\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+.....+\frac{n}{2^n}+.....+\frac{2017}{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

12 tháng 1 2017

s<2

bài này hình như mk lm ròi nhg ko nhớ là phải đáp án này ko

nếu sai cho mình xl

25 tháng 3 2017

S<2 bạn nha

CHÚC BẠN HỌC GIỎI

23 tháng 1 2017

hihi tui mới học lớp 5 thui 

23 tháng 1 2017

xin lỗi,mk  ko bt

[​IMG]

22 tháng 3 2018

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\)  => \(\frac{T}{2}=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\)

=> \(T-\frac{T}{2}=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\right)\)

<=> \(\frac{T}{2}=\frac{2}{2^1}+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2017}{2^{2016}}-\frac{2016}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)

<=> \(\frac{T}{2}=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)

Đặt: \(M=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}=>2M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}\)

=> \(2M-M=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

=> \(M=\frac{1}{2}-\frac{1}{2^{2016}}< \frac{1}{2}\)

=> \(\frac{T}{2}< 1+\frac{1}{2}-\frac{2017}{2^{2017}}< 1+\frac{1}{2}=\frac{3}{2}\)

=> T < 3

8 tháng 7 2017

mình gợi ý nè : bạn thử lấy T nhân với 2 xem ( cả hai vế nhé )

         Nếu bạn không ra thì k cho mình đi mình trình bày cho đôn giản mà mỗi tội hơi dài một chút.

31 tháng 3 2018

Giải chi tiết tôi với.Tôi thử làm nhưng không ra.

17 tháng 7 2017

uhjpk