Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D=1/22+1/32+1/42+1/52+....+1/102+1/112
1/22<1/1x2 ; 1/32<1/2x3;...
=)D<1/1x2+1/2x3+1/3x4+1/4x5+...+1/9x10+1/10x11
D<1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11
D<1-1/11
D<10/11
a) Quy đồng pso và tính như bthg (4824829/6350400)
b) Vì 4814819 < 6350400 => A < 1
ta có: \(1=\frac{1}{1^2};\frac{1}{4}=\frac{1}{2^2};\frac{1}{9}=\frac{1}{3^2};\frac{1}{16}=\frac{1}{4^2};....\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)( tổng 100 số hạng đầu tiên)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\left(1-\frac{1}{100}\right)=1+1-\frac{1}{100}=2-\frac{1}{100}< 2\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
100 số hạng đầu tiên của dãy là 1;1/4;1/9;...;1/10000
A=1+1/2^2+1/3^2+...+1/100^2<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100=2-1/100<2
\(A=1\frac{4}{5}\times1\frac{4}{21}\times1\frac{4}{45}\times...\)
Ta có: \(1\frac{4}{5}=\frac{5+4}{5}=\frac{9}{5}=\frac{3\times3}{1\times5}\)
\(1\frac{4}{21}=\frac{21+4}{21}=\frac{25}{21}=\frac{5\times5}{3\times7}\)
\(1\frac{4}{45}=\frac{45+4}{45}=\frac{49}{45}=\frac{7\times7}{5\times9}\)
...
Tổng quát thừa số thứ \(n\)là: \(\frac{\left(2\times n+1\right)\times\left(2\times n+1\right)}{\left(2\times n-1\right)\times\left(2\times n+3\right)}\)
Thừa số thứ \(100\)là: \(\frac{201\times201}{199\times203}\).
Tích \(A\)là:
\(A=\frac{3\times3}{1\times5}\times\frac{5\times5}{3\times7}\times\frac{7\times7}{5\times9}\times...\times\frac{201\times201}{199\times203}\)
\(=\frac{\left(3\times5\times7\times...\times201\right)\times\left(3\times5\times7\times...\times201\right)}{\left(1\times3\times5\times...\times199\right)\times\left(5\times7\times9\times...\times203\right)}\)
\(=\frac{201\times3}{1\times203}=\frac{603}{203}\)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(N>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(N>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{10}{22}>\frac{9}{22}\)
Vậy N > 9/22
so sánh tổng a với 3/4 biết a= 1/4 1/9 1/16 1/25 ...... 1/4036081
Mk cần gấp lắm! Ai nhah mk tick cho
\(a=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{4036081}\)
\(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{2009\times2009}\)
\(< \frac{1}{2\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2008\times2009}\)
\(=\frac{1}{4}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{2009-2008}{2008\times2009}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(=\frac{3}{4}-\frac{1}{2009}< \frac{3}{4}\)
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}+\frac{1}{121}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}+\frac{1}{11^2}\)
Ta có: \(\frac{1}{2^2}>\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}>\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4^2}>\frac{1}{4}-\frac{1}{5}\)
................................
\(\frac{1}{10^2}>\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{11^2}>\frac{1}{11}-\frac{1}{12}\)
Cộng theo vế ta được:
\(A>\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
Vậy \(A>\frac{5}{12}\)