Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+....+\frac{1}{\sqrt{100}}\)
\(\Leftrightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>100.\frac{1}{\sqrt{100}}=10.\)
Xét A-B=5-\(\sqrt{10}\)(2/3+1)= 5-\(\frac{5\sqrt{10}}{3}\)=5(1-\(\frac{\sqrt{10}}{3}\)) < 0
Vậy A<B
\(2\sqrt{10}=\sqrt{4\cdot10}=\sqrt{40}>\sqrt{36}=6\Rightarrow2\sqrt{10}>6\)
\(\Rightarrow15-2\sqrt{10}< 15-6=9\Rightarrow\frac{15-2\sqrt{10}}{3}< \frac{9}{3}=3\)mà \(3=\sqrt{9}< \sqrt{10}\Rightarrow\frac{15-2\sqrt{10}}{3}< \sqrt{10}\)
a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b/ Ta có:
\(\sqrt{n}< \sqrt{n+1}\)
\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng vào bài toán được
\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)
\(=2\left(\sqrt{37}-1\right)>6\)
Bài 2: So sánh
1) Ta có: \(\left(\sqrt{\frac{10}{17}}\right)^2=\frac{10}{17}\)
\(\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
mà \(\frac{10}{17}>\frac{9}{16}\)
nên \(\left(\sqrt{\frac{10}{17}}\right)^2>\left(\frac{3}{4}\right)^2\)
hay \(\sqrt{\frac{10}{17}}>\frac{3}{4}\)
2) Ta có: \(\left(1+\sqrt{15}\right)^2=16+2\sqrt{15}\)
\(\left(\sqrt{24}\right)^2=24\)
Ta có: \(2\sqrt{15}=\sqrt{60}< \sqrt{64}=8\)
\(\Leftrightarrow2\sqrt{15}< 8\)
\(\Leftrightarrow16+2\sqrt{15}< 24\)
\(\Leftrightarrow\left(1+\sqrt{15}\right)^2< \left(\sqrt{24}\right)^2\)
hay \(1+\sqrt{15}< \sqrt{24}\)
1) \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)
\(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0
=> A=3
2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)
\(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)
Mà A >0
=> A=2
Mà 4>3
=> \(\sqrt{4}=2>\sqrt{3}\)
=> \(A>\sqrt{3}\)
\(\sqrt{\frac{10}{17}}va\frac{3}{4}\)
Ta có \(\frac{10}{17}>\frac{9}{16}\)
\(\Rightarrow\sqrt{\frac{10}{17}}>\sqrt{\frac{9}{16}}\)
\(\Rightarrow\sqrt{\frac{10}{17}}>\frac{3}{4}\)
Học tốt